
Production, 30, e20190068, 2020
DOI: 10.1590/0103-6513.20190068

ISSN 1980-5411 (On-line version)

Thematic Section - Sustainability in Transportation and Logistics

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Passenger transport, as well as freight transport, plays a key role in urban environments. However, in recent 
years, there has been an increase in the levels of motorized individual transport in relation to public transport 
(Observatório das Metrópoles, 2012), imposing externalities on society, economy and the environment.

Urban transport in general, especially motorized individual transport, requires the use of fossil fuels, generating 
thus negative environmental impacts, such as the emission of greenhouse gases (GHG), air pollutants, noise, 
public health problems, road damage, accidents, traffic congestion and the excessive use of public spaces in 
cities. These problems represent challenges to public authorities and transport planners, who must address such 
externalities in order to promote a better quality of life to local population.

In this way, this theme has attracted the attention of the academy in the search of sustainable solutions for 
urban passenger transport (Campos, 2006; Litman, 2007; Guimarães & Leal Junior, 2017). Among the proposed 
solutions, bicycle sharing has emerged as a viable and sustainable transportation alternative and has received 
attention in recent years (Wang & Zhou, 2017).
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Bicycle sharing systems are often implemented aiming to increase mobility in the first and last miles of 
passenger transport to other modes of transport, and thus reducing traffic congestion, energy consumption 
and environmental impact in cities, as well as improving the quality of life and urban population public health 
(Audikana et al., 2017). However, few empirical studies explore comprehensively the externalities of bicycle 
sharing, seeking to quantify the impacts of this type of travel system on urban transport.

In this context, this present paper seeks to quantitatively assess the externalities of bicycle sharing systems 
regarding its contribution to the reduction of CO2, CO, NOx and Particulate Matter (PM) emissions in the city 
of Rio de Janeiro, Brazil. The three mentioned pollutants are, in the specific case of transport, among the ones 
that cause the most impact in urban areas (D’Agosto & Ribeiro, 2009). Additionally, this study aims to analyze 
travel behavior changings promoted by the bicycle sharing system in the city of Rio de Janeiro, using a modal 
split model calibrated with stated preference interviews and travel data provided by Tembici Company.

The number of bike sharing is growing worldwide (Suchanek, 2018). In Brazil, the municipality of Rio de 
Janeiro is the precursor of the national system, started in October 2011 and currently operated by the Tembici 
Company. Since then, bicycle sharing systems have been implemented in several cities in Brazil: São Paulo, Rio 
de Janeiro, Salvador, Recife e Porto Alegre. According to information from the Mobilize Website (2018), about 
13,5 million bicycle trips were made in 2017. This paper is structured as follows: a history of the bicycle sharing 
system, the estimation of environmental impacts and its use are presented in Section 2. Section 3 describes the 
methodology used in the calculation of CO2, CO, NOx and Particulate Matter (PM) emissions. In Section 4, the 
application of the proposed methodology in the bike sharing system in the city of Rio de Janeiro is presented, 
as well as the assessment of results obtained. Finally, Section 5 presents the conclusions, limitations of the 
research and suggestions for future research.

2. A brief history on bike sharing and estimation of the environmental benefits

The first initiative in the world involving the implementation of a Bike Sharing System (BSS) was in Amsterdam 
in 1965. The system, called White Bike, failed relatively quickly due to thefts and vandalism, which were facilitated 
by the fact that bicycles were not equipped with safety features (DeMaio, 2009). This first generation of BSS 
was characterized by the absence of a payment system or safety devices (Parkes et al. 2013).

The second generation appeared in 1995 in the city of Copenhagen that consisted of a coin’s deposit system 
to perform the transport payment. However, the theft problems persisted (DeMaio, 2009). With developments 
in security systems such as bicycle tracking and electronic payment systems, risks have been reduced in the 
management of BSSs. These innovations, along with fixed anchoring stations enabled for Internet & Communication 
Technologies (ICT), portray the third generation of BSSs (Shaheen et al., 2014).

There has been a growing interest of public managers in the benefits associated with BSSs (Midgley, 2011; 
Shaheen et al., 2010). As a result, there was a significant increase in third generation BSSs around the world 
between 2004 and 2014, when the number of cities with bicycle sharing systems rose from 13 to 855 (Fishman, 
2016). These cities adopted different operation and prices schemes. In Netherlands, for example, there is a 
single national bicycle sharing system, a program called “OV-fiets”, which operates through the signature of 
“OV-chipkaart” - a contactless smart card. In London, supported by private sector, the Transport for London, 
responsible for BSSs system, allows the first 30 minutes to be subsidized with a payment of an access fee of £ 
2.00 per credit card. In North America, a Montreal-based company, PBSC Urban Solutions, offers integrated BSS 
solutions (including bicycles, payment stations, locking systems and smartphone applications) to various cities 
such as Montreal and Toronto in Canada; Boston, New York and Washington, D.C. in the USA; and Guadalajara 
and Toluca in Mexico. In South America, the cities of Buenos Aires, Rio de Janeiro and Quito have established 
partnerships with private entities to operate BSSs. In this way, the fourth generation of BSSs has emerged. It 
includes features such as solar-powered docking stations, power assisted bikes, transit smartcard integration, 
and the use of smartphone applications for real-time updates (Parkes et al., 2013). In June 2017, the company 
Urbo started to operate dockless bicycle sharing programs in Ireland and across Europe.

There are a number of possible social, environmental and health benefits associated with BSSs, such as: 
(1) reduction in traffic jam, emissions of GHG, air pollutants and noise; (2) flexible mobility, improved transport 
connection; (3) health promotion; and (4) customer financial savings (Shaheen et al., 2010, 2013). Many of these 
benefits assume that the implementation of BSSs has encouraged their users to shift the mode of transportation 
of their trips, previously made by motorized vehicles, for the use of bicycle. For end users the main perceived 
benefits of BSSs are convenience and low travel cost (Fishman et al., 2013). However, empirical evidence has 
not reached consensus if such an assumption is actually based on reality (Midgley, 2011).
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The first researches on the topic show general agreement with the assumption that the launch of BSSs 
demonstrated an increase in global cycling activities in urban areas. For instance, the percentage of trips made 
by bicycles after the launch of the BSSs increased from 0.75% in 2005 to 1.76% in 2007 in Barcelona, from 
1.0% in 2001 to 2.5% in 2007 in Paris and from 0.5% in 1995 to 2% in 2006 in Lyon (García-Palomares et al., 
2012). In addition, a BSS (OYBike) study in London revealed that 40% of the bike sharing system users previously 
traveled by cars (Noland & Ishaque, 2006). On the other hand, Pucher et al. (2010) argued that such results were 
inconclusive because, despite the fact that cycling has been increasing in cities since the introduction of BSSs, 
the growth of bicycle sharing mode may have been the result of the overall improvement of bicycle facilities. 
Even so, DeMaio (2009) showed explicitly that the BSS in Montreal was successful, reducing GHG emissions by 
more than 1,300 tons since its implementation in May 2009, although this figure represents only 0.009% of total 
greenhouse gases emission from Montreal (13.7 million tons of CO2 equivalent) (Pembinas Institute, 2019). A 
recent study by Hamilton & Wichman (2018) revealed that BSSs reduced neighborhood jam in Washington, D.C.

It is important to note that, although several cities around the world have implemented BSSs to encourage 
the use of bicycles, the success of this system relies on how end-user demand would be met (Frade & Ribeiro, 
2015; Wolf & Seebauer, 2014). For end users the main perceived benefits of BSSs are convenience and low 
travel cost (Fishman et al., 2013). It is noted that there has been no consensus on whether the launch of BSSs 
has promoted the transfer of trips previously performed by motor vehicles for bicycles.

Shaheen et al. (2011) conducted a survey of BSS users in Hangzhou, verifying that 78% of respondents who 
owned their own cars used public bicycles to replace their private vehicles. Among those interviewed without a 
car in their homes, 20% used public bicycles as a substitute for taxis. While this evidence suggests that BSSs are 
reducing vehicle use, more research is required to determine its true impact on reducing greenhouse gas emissions.

As noted by Fishman et al. (2013), a calculation of emission reductions requires knowledge of the distance 
traveled using public bicycles, as well as knowing the mode of transport that would have been used if the BSS 
not existed. Li et al. (2014) proposes a theoretical model that suggests a bicycle sharing system can result in net 
emission reductions if combined with a policy of taxing these emissions. The proposed model considered a travel 
disutility function for the auto mode, that consists on the following cost components: in-vehicle travel time, 
out-of-vehicle walking time, (monetary) travel cost, and additional emission taxes. This last term corresponds 
to a tax rate per unit of traffic emissions, which is measured in dollars per kilogram. This model, however, was 
not applied to an existing program. Zhang & Mi (2018), using big data techniques, estimated the impacts of 
bicycle sharing on energy use and emissions of carbon dioxide (CO2) and nitrogen oxide (NOX) in Shanghai from 
a space-time perspective. By 2016, bicycle sharing in Shanghai saved 8,358 tons of gasoline and reduced CO2 
and NOx emissions by 25,240 and 64 tons, respectively, representing 0.06% of total transportation emissions 
(42 Mt). Qiu & He (2018) estimate the impacts of bicycle sharing on economy, energy use, environment and 
public health. The empirical results show that bicycle sharing programs have significant positive externalities. 
In addition, CO2 emissions from road transport in Beijing would decrease by almost 616.04 thousand tons, and 
emissions of SO2, NO2 and CO would decrease by 22.50, 58.64 and 1586.66 tons, respectively, when compared 
to year 2015.

Although most of the papers and reports suggest that BSSs promote environmental benefits in terms of GHG 
and air pollutants emission, due to the replacement of cars by active transport, few demonstrate quantitatively 
this reduction. Thus, this article proposes to quantify the environmental benefits in terms of CO2, CO, PM and 
NOx emissions reduction due to the use of the BBS in Rio de Janeiro, BikeRio. CO2 is the main GHG, while 
atmospheric pollutants act locally and therefore have a greater impact on urban areas, are CO, NOx and PM 
(D’Agosto & Ribeiro, 2009).

3. Methodology and data collection

In this section, we present a contextualization of the study area, as well as the data collection process. 
Besides, it is presented the proposed method for estimating the reduction of GHG and Atmospheric Pollutants 
emissions due to the modal shift to the BSS.

3.1. Area of study and data collection

With an area of 1,255 km2 and a population of 6.68 million, Rio de Janeiro is the second largest city and 
the main international tourist destination in Brazil, representing one of the largest economic, cultural and 
financial centers in the country.
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Data used in this research were provided by the company Tembici, and it corresponds to the period from 
07/31/2018 to 10/01/2018. From August to September 2018, the average usage of this system in Rio de 
Janeiro was 17,476 trips per day with a total of 1,048,575 trips. After excluding trips with the same origin and 
destination, 926,069 was remained, for each of which data were collected regarding trip start time, longitude 
and latitude of origin, trip end time, longitude and latitude of destiny.

3.2. The proposed benefits estimation method for bike sharing systems

For estimating the reduction in GHG and air pollutants emissions due to the use of BSS in the city of Rio 
de Janeiro, we must understand how the modal transfer process occurs, identifying the number of motorized 
trips avoided. Therefore, it is necessary to define the transport alternatives that would be adopted by the BSS 
user, if this system were not available.

In this paper, the following alternative scenarios were considered: walking, bus and car transport service 
provided by Transportation Network Company (TNC), such as Uber or Cabify. It is important to reinforce that 
recently the use of other modes of individual transport is increasing in cities worldwide, such as the dockless 
scooter-share services, which were not considered in this research because they only started operating in Rio de 
Janeiro in 2019. Moreover, while the BSS are being offered for a longer period of time and are primarily used 
by individuals commuting to and from work, the scooter-share service is not, and it has not been offered for a 
period of time long enough to build trust within the community, and for many residents these scooters remain 
a novelty (McKenzie, 2019). The Subway mode was not considered, once this paper has focuses on last mile 
travel behavior along short travels scenarios up to 5 km, similarly to that adopted by Liu et al. (2019).

The Multinomial Logit Model, widely used in transport problems (Williams & Abdulaal, 1993; Ortúzar, 2000; 
Kuklys, 2002), was used for establishing the discrete choice model among the three travel alternatives. This model 
assumes that negative travel pattern factors, such as high direct cost, can be offset by positive factors such as 

The BSS in the city of Rio de Janeiro, called BikeRio, was released in October 2011 in the South, North 
and West Zones of the city, through a partnership between Rio de Janeiro City Hall and Itaú Bank, and it is 
operated by the Serttel concessionaire. The system currently has more than 2,600 bicycles available at 193 dock 
stations in Ipanema, Copacabana, Leblon, Urca, Centro, Lagoa, Botafogo, Flamengo, Jardim Botânico, Gávea 
and other neighborhoods of the North and West Zone. In February 2018, the system was replaced by Itaú Bike, 
with the bicycles and technology provided by the Canadian company PBSC Urban Solutions and operated by 
Tembici Company.

Currently, Itaú Bike has stations in the North Zone, in the Center of Rio and in Port Zone, interconnecting 
with the already existing system in South Zone. Recently, this service was implemented in the regions of Barra 
da Tijuca and Recreio dos Bandeirantes, interconnecting them, according to the existing bicycle routes, with 
the local beaches, commercial points, and shopping malls, in addition to the BRT TransCarioca, BRT TransOeste 
and Metro Rio. The stations are powered by solar panels and use locking latches and pins as a security system 
to difficult bicycle theft. The stations are interconnected by wireless communication system, connected to the 
Control Center. Figure 1 shows a map of the stations and bicycles in a station.

Figure 1. Map of the stations and bicycles in a station.
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The configuration commonly used for the utility function follows a linear additive model (Ben-Akiva & 
Lerman, 1985), in such a way that i 0 1 i1 2 i2 k ikV X X Xβ β β β= + + +…+ , where , ,1 2 k β β β…  are the parameters of the 
model, k is the attribute of the alternatives, and , ,i1 i2 ikX  X X  … are the attribute values of the alternatives. In 
this paper, the following attributes were considered: driving time using TNC ttnc; cost of TNC utilization ctnc; 
travel time using bus tbus; cost of bus use cbus; and walking time tpe;

The parameters , ,1 2 k β β β… , presented in the utility functions of each transport alternatives, were calibrated 
to better explain the existing modal split. A total of 64 stated preference interviews were carried out with BSS 
users during November-December 2018, in the neighborhoods of Botafogo and Tijuca, which were chosen 
because they present a greater flow of passengers and also have BSS stations near subway terminals and transfer 
stations. The values of the independent variables presented in the questionnaires were determined by varying 
the hypotheses of the trip and the distances of the trip, in intervals between 0.6 km and 4.8 km. Thus, for each 
hypothesis of trip, the interviewee had to choose only one of three transport alternatives presented, having as 
decision criteria the cost and travel time associated with them (Table 1).

After selecting the variables and carrying out the interviews, the Logit calibration was performed using the 
SPSS 25.0 software, applying the maximum likelihood method to define the final model that minimizes the 
number of utility function variables of each travel alternative assessed, maximizing the accuracy of the model. 

reduced travel time. Therefore, individuals choose a mode of transport (or a sub-mode), based on the total sum 
of positive or negative utilities that are associated with factors that influence the trip’s accomplishment. Hence, 
the probability of choosing a given alternative is due to identifiable logical variables in an observed universe, 
as presented in Equation 1.
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Wherein: iP : represents the probability of choosing the transport alternative i;
 iV : corresponds to the utility function of transport mode i.

For the case assessed, three substitute choice options for the BSS (car, bus and walking) are considered, so 
the probability of using the TNC mode, for example, can be defined by Equation 2.
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In this paper, we used the Nested Logit Model, which is an extension of the multinomial logit model designed 
to capture correlations between alternatives (Bierlaire, 1998). It differs from the multinomial logit model because 
it is possible to group alternatives that are similar in the same hierarchy. The grouping of transport alternatives 
was carried out in two hierarchical levels: (i) level one corresponding to the alternatives of walking and motorized 
transport; and (ii) level two corresponding to transport by TNC and bus. Figure 2 shows the structure of the 
Nested Logit Model in two levels, adopted in this paper.

Figure 2. Structure of the hierarchical model used in the article.
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It was applied the Forward Stepwise Wald (SPSS 25.0 software) (SPSS Inc., 2003), which consists of a regression 
technique in which the model begins with no variables in the equation, adding one variable at a time, until all 
of them are in the model or until one stop criterion is satisfied. This procedure starts from the assumption that 
there is no variable in the model, only the intercept, and the first variable selected is the one with the highest 
correlation with the response. The variable is kept in the model if the F statistic is greater than the critical point, 
which is calculated for a given critical alpha. Thus, assuming that a variable x1 was selected for the model, the 
next step is to find a variable with the highest correlation with the response, considering the presence of the 
first variable in the model. This is called a partial correlation, and it is the correlation of the residuals of the 
model  ˆ 0 1 1y xβ β= +  with the residuals of the model    ,j 0 j 1 1x x  j 2 3 pα α= + = … . Therefore, assuming that the largest 
partial correlation with y is x2 and this implies that the largest partial F statistic is calculated by expression 3.

 ( )
( ),
2 1

i
1 2

SQR x x
F

QME x x
 

=   
 


  (3)

Wherein: SQR: is the sum of the squares of the model;
QME: is the mean square of the errors, for variables x1 and x2. If the value of the statistic is greater than the 
critical point, x2 is selected to compose the model.

The utility functions of the three transport alternatives were defined and calibrated. The resulting Logit model 
was then used to estimate the probability of choosing each transport mode (walk, TNC and bus), considering 
the case that the BSS was not available. For that, we considered the 37,249 trips between the 193 BSS stations 
in the origin-destination (OD) matrix formed by the data provided by Tembici. To construct this OD matrix, we 
used the Google Maps APIs with data from the afternoon peak hours, established as the period between 17h 
and 18h, as reported by the PDTU of Rio de Janeiro (2015). Moreover, since each pair of origin-destination of 
this matrix is associated with the geo-referenced localizations of two bicycle sharing stations, it was possible 
to estimate the travel times, costs and distances for these hypothetical trips, according to each of the three 
transport modes considered in this study.

The simplifying hypothesis, therefore, is that the distances evaluated in each mode of transport will correspond 
to the paths that provide the shortest travel time, as shown in Figure 3.

For estimating reductions in GHG and air pollutants emissions due to the modal shift, trip projections were 
made for the time interval of one year, adopting, in a simplified way, the average value of the trips made in the 
two months whose data were made available by Tembici. We followed the bottom-up methodology, using the 
emission factors proposed in the 2nd National Inventory of Atmospheric Emissions by Road Automotive Vehicles 
(Brasil, 2013). Data on the category and average age of the car fleet was obtained in the data provided by the 
authors of the Technical Report - GHG Emission Scenarios - 2050 (D’Agosto et al., 2018), and the average age 
of the bus fleet was obtained from the Summary Report of the transportation system by bus in the city of Rio 
de Janeiro (Federação das Empresas de Transportes de Passageiros do Estado do Rio de Janeiro, 2018). The 
percentage of the current fleet according to each type of fuel was obtained from the State of Rio de Janeiro - 
2017-2031 Energy Matrix Report (Rio de Janeiro, 2018). Table 2 presents the summary of the factors considered 
for the calculation of emissions. Since it is not possible to estimate the exact proportion of consumption between 
gasoline or ethanol options for flex vehicle, the row corresponding to flex vehicle presents the range of values 
for the hypothesis of gasoline or ethanol use by flex-fuel vehicles, according to MMA (Brasil, 2013).

4. Findings and discussions

From the interviews conducted in Botafogo and Tijuca neighborhoods, we could estimate the number of 
trips that would be made by bus, TNC or walking, if the BSS was not available, such as shown in Figure 4. The 
sum of the scenarios 1 to 7 totalizes 256 answers. Since the questionnaire contains 4 possible scenarios, there 
has been therefore a total of 64 BSS users interviewed.

Table 1. Scenarios inserted in the interviews of stated preference.

Scenario Distance (Km) ttnc (min) ctnc (R$) tbus (min) cbus (R$) tpe (min)

1 0.95 5.00 7.50 6.00 4.00 12.00

2 1.4 9.00 7.50 15.00 4.00 18.00

3 4.5 17.00 13.00 19.00 4.00 56.00

4 2.4 11.00 9.00 14.00 4.00 29.00

5 0,6 6.00 9.00 5.00 4.00 8.00

6 1,9 3.00 9.00 11.00 4.00 21.00

7 4,8 14.00 13.00 32.00 4.00 59.00
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It was verified that the behavioral changes regarding the choice of transport mode is related to the distances 
presented in the questionnaire and their consequent variations of travel time and cost. As shown in Figure 5, 
as distances increase the motorized travel mode choice is preferred in relation walking. In the selected regions, 
respondents answered that the trips up to 1.4 km occur predominantly by walking. However, in trips with 
distances equal or greater than 1.9 km, both TNC and bus are the transport alternatives most adopted. In 
order to extend the modal repartition analysis to the 193 Tembici stations system, the Logit calibration was 
carried through the stated preference surveys, applying the Forward Wald Stepwise method, and by estimating 
parameters of maximum likelihood to evaluate the quality of the calibrated models. It should be emphasized 
that the models were generated including several different combinations of the explanatory variables and, 
therefore, the presented results include the models and variables that present greater significance. The level of 
significance was set at 5%. Results are presented in Table 3. After the iterations, four of the five independent 
variables presented significance to compose the final model.

Figure 3. Travel modes and its corresponding calculated time and distances.

Table 2. GHG and pollutant emission factors by vehicle category.

Categories Fuel

Specific 
consumption 

Km/l
(km/m3 for 

CNG)

% of fleet
Age of Fleet

(years)
NOx (g/km) CO2 (kg/l) CO (g/km) PM (g/km)

Ethanol 6.9 1 25 0.03 1.457 4.2 -

Light 
vehicles

Gasoline 10.4 19 17 0.02 2.212 0.48 1.56

Flex
* 8.6

60 4.4
0.03 1.457 0.47 -

** 12,2 0.03 2.212 0.27 13.37

CNG 12 20 11 0.29 1.999 0.56 -

Urban Buses Diesel 2.5 100 4.7 2.103 2.603 0.27 262.76
*: ethanol use hypothesis by Flex vehicles; **: gasoline use hypothesis by Flex vehicles; CNG: compressed natural gas; CO: Carbon monoxide; PM: Particulate matter.
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According to the parameters estimated in Table 3, the utility functions were obtained as follows:

 . .walkV 4 449 0 247*twalk= − ;  (4)

 . .tncV 1 916 0 295*ctnc= −   (5)

 . . . .busV 2 475 0 109*twalk 0 133*tbus 0 243*ttnc= − + + −   (6)

Figure 4. Travel quantities declared by mode and distance.

Figure 5. Modal replacement according to transport mode and scenario.

Table 3. The model estimation results.

Mode choice Equation terms B S.E W df Sig Exp(B)
Cox & Snell’s 

R-Square
Nagelkerke’s 

R-square

Walk
twalk -0.247 0.034 53.707 1 0 0.781

0.462 0.62
Constant 4.449 0.636 48.883 1 0 85.545

TNC
ctnc -0.295 0.093 10.169 0.001 0.74

0.06 0.097
Constant 1.916 0.908 4.448 1 0.035 6.791

ttnc -0. 243 0.085 8.217 1 0.004 0.784

Bus

tbus 0.133 0.066 4.109 1 0.043 1.142

0.321 0.428twalk 0.109 0.025 19.787 1 0 1.115

Constant -2.475 0.531 21.755 1 0 0.084
B=Estimated parameters; S.E=standard error; W=Wald statistic; df=degrees of freedom; Sig= Significance of Wald statistics; Exp(B)=ODDS; TNC= Transportation Network 
Company.
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When analyzing the utility functions for walking trips (equation 4), the variable that was statistically significant 
to explain the choice of the interviewees for this mode was the time in which the trip would be done by walking 
(twalk). As for trips made by TNC (equation 5), the travel cost by TNC is considered (ctnc), and for the travel 
mode by bus (equation 6), all the three travel times are considered in the model (twalk, ttnc and tbus). ODDS 
corresponds to the odds ratio (Hosmer & Lemeshow, 2000), and is defined as the ratio between the probability 
for x=1 and x=0, of choosing between two alternatives for the Nested Logit Model. ODDS greater than 1 indicates 
that the variable concerned increases the probability of choosing the mode of transport analyzed, and ODDS 
less than 1 decreases the choice’s likelihood.

The Wald (W) test is used to verify constraints imposed on the regression coefficients and computes a 
statistic that measures the estimate of the coefficients of the original regression to satisfy the constraints of 
the null hypothesis, thus testing the significance of each model coefficient (B). Cox & Snell’s R-square and 
the Nagelkerke’s R-square, whose values are less than or equal to 1, are pseudo statistical R2 that represent a 
fraction of the variance that is shared between the variables and are calculated on the basis of the likelihood 
function (Hosmer & Lemeshow, 2000).

Therefore, by applying Equation 2, the probabilities of choosing walking, TNC and bus travel are defined 
according to Equations 7 to 9.

 ( )
. .

. . . . . . . . 

4 449 0 247*twalk

4 449 0 247*twalk 1 916 0 295*ctnc 2 475 0 109*twalk 0 133*tbus 0 243*ttnc
eP walk

e e e

−

− − − + + −

 
=   + + 

  (7)

 ( )
. .

. . . . . . . . 

1 916 0 295*ctnc

4 449 0 247*twalk 1 916 0 295*ctnc 2 475 0 109*twalk 0 133*tbus 0 243*ttnc
eP TNC

e e e

−

− − − + + −

 
=   + + 

  (8)

 ( )
. . . .

. . . . . . . . 

2 475 0 109*walk 0 133*tbus 0 243*ttnc

4 449 0 247*twalk 1 916 0 295*ctnc 2 475 0 109*twalk 0 133*tbus 0 243*ttnc
eP bus

e e e

− + + −

− − − + + −

 
=   + + 

  (9)

Figure 5 presents the results for the modal split obtained by the application of Equations 7 to 9, considering 
the 7 scenarios described in Table 1 (Section 3). Walking is the predominant choice in scenarios 1 and 2, which 
consider shorter travel distances. However, as walking time increases, this option becomes disadvantageous, 
which is translated by the negative coefficient of parameter B, equal to -0.247 in Table 3. The utility function 
for this travel mode assumes positive values for routes performed up to 18 minutes, which suggests this as 
the time limit that the individuals interviewed would predispose to walk, without opting for the adoption of a 
motorized travel mode.

Trips performed by TNC exceeds the number of trips performed by bus only in scenario 2, since the distances 
considered in these scenarios, result in the minimum fees charged for private transport applications, making it 
thus a viable option in comparison to bus. To the extent, however, that travel time per car increases, reflecting 
on higher service charges, bus transportation becomes more advantageous. This explains the negative sign of 
parameter B in the TNC utility function variable ctnc (Table 3). For scenarios 3, 4, 6 and 7, the bus option 
prevails in relation to other modes of transport. When comparing the interviews results (Figure 4) with the 
result of the utility functions application (Figure 5), it was verified that the model was able to determine the 
BSS users predominant choice between motorized and non-motorized transport for all seven scenarios, proving 
to be equivalent to all observed results in interviews.

Expanding this analysis to the total of 1,048,575 trips registered in the BSS of Itau Bike, the modal split 
model resulted in 283,220 foot trips (27.01%), 109,262 TNC trips (10.42%) and 656.093 bus trips (62.57%), 
indicating, therefore, that in the city of Rio de Janeiro most of the users would be replacing the walk and 
the public transit by the use of the bicycle, in accordance with the findings in the literature for other cities 
(Fishman et al., 2015; Zhu et al., 2012). As shown in Table 4, the modal replacement rates obtained from the 
proposed model for BSS of Rio de Janeiro are included among the values verified in other existing bicycle sharing 
systems in the world, indicating the validation of the calibrated model.

Table 5 shows the estimations of CO2, CO, PM and NOx emission reductions due to the use of BSS. Estimations 
were made according to the methodology presented in Section 3, considering the number of trips made, the 
transportation mode employed, and the total distances traveled. Due to the greater transport capacity offered 
by these transport modes when compared to bicycles, the average occupancy factor adopted was: 1.3 people per 
vehicle for cars, and 35 people per vehicle for the urban bus, thus trips were grouped according to the offered 
transportation capacity. Both data obtained from the Energy Matrix Report of the State of Rio de Janeiro - 
2017-2031 (Rio de Janeiro, 2018).
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It can also be observed, from Table 6, changes in the percentage of BSS trips that replace the use of public 
and individual transport when comparing the research scenarios of 2014 and 2018. This fact is mainly due 
to the transportation alternatives considered in these two studies. In 2014, interviewees had the option to 
choose from individual motorized transportation by private cars, whereas in 2018 the alternative offered to 
the interviewees was the travel mode by cars offered by TNC services, through applications. Thus, it has been 
identified that, under certain conditions of time and cost, transport applications begin to compete with public 
transport modes, modifying the modal split between trips made by car and bus, particularly in last-mile travel 
scenarios. It is also suggested that the usage expansion of transport applications, especially to non-private car 
owners, justifies the higher adoption rate of individual transportation by the interviewees.

This change in modal replacement percentages significantly affects the calculated emission values. In fact, 
the average load factor of 1.3 passengers per vehicle adopted for the TNC exerts a greater environmental 

Detailed interviews were conducted by Oliveira (2014) with BSS users in Rio de Janeiro and their results 
were checked for plausibility, comparing it with rates for transport modes replaced by BSSs collected in papers 
published for other cities (Intelligent Energy Europe, 2011; Zhu et al., 2012; Fishman et al., 2015). When 
comparing the CO2 reduction results estimated in this paper with the analysis by Oliveira (2014), it is possible 
to verify that the BSS in the city of Rio de Janeiro has evolved in terms of the environmental benefits provided, 
since there was an increase in the gross reduction of CO2 (ton CO2/year). It is justified by the greater number 
of bicycles available, reflecting in the number of trips and kilometers traveled per year, as shown in Table 6. 
Average distances traveled per trip changed from 3.5 km in 2014 to 2.62 km in 2018, presenting an average 
reduction of 25.14%, which can be explained by the growing number of stations made available by the system. 
This figure went from 60 stations in 2014 to 193 in 2018.

Table 4. Transport modes replaced by BSSs.

Barcelona Stockholm Lyon Paris Milan Rio de Janeiro

Users who have moved from 
motorized transport

73.56% 63.21% 56% 73% 77.42% 72.99%

Users who have transferred from 
non-motorized transport

26.54% 36.33% 44% 20% 22.58% 27.01%

Source 1 2 2 1 1 -
Source 1: OBIS (Intelligent Energy Europe, 2011); Source 2: Oliveira (2014).

Table 5. Estimated emissions reduction due the bike sharing in Rio de Janeiro.

Category
Number. of 
annual trips

Occupancy 
factor

Adjusted 
travels

Fuel
Travelled 

distance (Km)
CO2 (ton) CO (ton) PM (ton) NOx (ton)

Light 
vehicles

655,782 1.3 504,448

Ethanol 11,187.43 2.36 0.047 - 0.001

Gasoline 212,561.15 45.21 0.102 0.33 0.004

Flex* 671,245.75 121.70 0.181 8.97 0.020

CNG 223,748.58 37.27 0.125 - 0.065

Bus 3,936,390 35 112,468 Diesel 378,176.64 393.76 0.102 99.37 0.795

Total annual 4,592,172 - 616,916 - 1,496,919.55 600.30 0.557 108.67 0.884
*Assumption for exclusive use of gasoline. CNG: compressed natural gas; CO: Carbon monoxide; PM: Particulate matter.

Table 6. Quantitative evolution of the bicycle sharing system in the city of Rio de Janeiro.

Comparative Oliveira (2014)
Observed scenario in 

2018 

Number of bicycles in the system 600 2600

Average distance per trip on Bike (Km) 3.50 2.62

Number of annual trips 1,288,215 6,291,450

Distance traveled per year (km) 4,510,852 16,509,063

Average daily trips per bike 3,531 17,476

% of bike trips replacing public transport 70% 62.57%

% of bike trips replacing individual transport 2% 10.42%

Reduction of CO2 emissions (ton / year) 17.321 206.54*

Participation in the reduction of emissions of the road transport sector in the municipality 0.0035%** 0.0418%**
*Considered only emissions from individual transport; **Compared to the estimated for the year 2016, according to the Inventory and scenario of greenhouse gases emissions 
from the City of Rio de Janeiro (Instituto Alberto Luiz Coimbra de Pós-graduação e Pesquisa de Engenharia, 2011).
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impact than 35 passenger load factor per vehicle adopted for the bus, so that a higher percentage of car modal 
shift to bicycles directly influences emission reduction efficiency indicators by the BSS. In 2018, this system 
allowed a reduction of 0.0418% of the total emissions made by the road transport sector in the city of Rio de 
Janeiro, which was estimated for the year 2016 at 4,937.2 Gg CO2, according to the Inventory and scenario of 
greenhouse gases emissions from the City of Rio de Janeiro (Instituto Alberto Luiz Coimbra de Pós-graduação 
e Pesquisa de Engenharia, 2011).

5. Conclusions, research constraints and recommendations for future research

The present paper aims to quantitatively explore the contribution of the bicycle sharing system in the reduction 
of CO2, CO, MP and NOx emissions to the city of Rio de Janeiro. In a first stage, we used actual travel data from 
the Tembici company the Google Maps APIs to estimate origin-destination matrices, constituted by distances, 
travel times and costs, to each considered alternatives. Then, we applied the preempted interviews to the users 
of the Tembici system, in order to allow the calibration of a modal split model that explains the choice behavior 
among the modes of transportation, for the scenarios evaluated. Finally, emissions were estimated in accordance 
to the information on the circulating fleet, vehicles occupancy rates and emission factors characteristic of each 
pollutant and GHG considered.

Results indicated a gross increase in CO2 emission reductions, compared to the existing system in 2014, 
not only due to the increase in the service offer, but also due to a higher transfer rate from private motorized 
to bicycle trips.

The logistic regression models obtained, allowed us to identify BSS user’s behavioral trends, and revealed 
that the variables travel time by walk, TNC and bus, as well as the travel cost by TNC, were the most statistically 
significant for the prediction of travel replacement models. Only the travel cost by bus was not incorporated 
into the model, since the fee charged is constant in all the routes studied. Hence, for the scenarios and distances 
assessed in the interviews the utility function for walking travel mode assumes positive values for the trips 
performed up to 18 minutes, whereas, for the TNC mode, the travel times results on the minimum fare charged 
by the transport applications, allowing favor to the use of this travel mode in relation to the bus one. As the 
price charged increases, bus trips become more advantageous, as verified in the utility function generated.

It was verified that the mode most substituted by BSS is public transport. Moreover, after introducing in 
questionnaires the transportation alternative by using TNC, it was observed a 7.43% reduction average net in 
public transport use among BSS users in Rio de Janeiro, comparing the research scenarios of 2014 and 2018. 
This phenomenon is in accordance to previous findings in major cities in the United States, where the average 
net change in public transport use suffered a 6% reduction (Clewlow & Mishra, 2017). It can be explained 
due to the increasing “technology-oriented” lifestyles: the degree of familiarity with modern technologies and 
their adoption in daily life is associated with a higher likelihood of adopting TNC services. Yet, many of the 
most fundamental changes occurred by these innovations – such as competitive travel – would seem to work 
in opposite directions, acknowledging concerns that “[…] every technological innovation has acted to increase 
demand rather than to reduce it […]” (Gössling, 2018, p.157).

The net environmental benefits of bicycle sharing depend on whether the system is considered a good 
substitute for the ownership and use of private vehicles, and whether it is well integrated with public transport, 
cycling and pedestrian infrastructure, so that it improves rather than replaces walking and public transport 
(Fishman et al., 2015). Therefore, although the emission reduction contribution reveals a small influence on the 
total emissions generated by the road transportation system in the city of Rio de Janeiro, bicycle sharing should 
be understood as part of the multimodality adopting process, with effective reductions achieved by encouraging 
the behavioral change of the transport systems users. Thus, the increase in bicycle density provided by the BSS 
growth, integrated with other public transport options and associated with measures that make car traffic less 
attractive, are likely to trigger a much more significant reduction in GHG and air pollutant emissions.

Although this study provides innovative and quantitative estimations of the environmental benefits of BSS, 
there are some constraints. First, due to the privacy issue, the bike-sharing data obtained were preprocessed by 
Tembici. Each trip only contained a collection of chronologically unordered spatial locations, consequently, it 
was impossible to accurately retrieve a user’s actual travel route from their travel information. It is suggested 
that in the future, the original trip data can be tracked by GPS. Based on this dataset, more accurate trips can 
be retrieved. Second, the survey relies on self-reported behavior and Some respondents may have provided 
information that did not reflect their real behavior, although there was little reason to do so knowingly. As a 
suggestion for future research, a larger sample size may help improve the degree to which the non-member 
sample represent the wider population.
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