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1. Introduction

Cross docking (CD) is a logistics distribution strategy used by many companies for arriving to clients faster; 
hence, being more competitive. It consists in transferring products from inbound trucks to outbound ones 
(van Belle et al., 2012) without storing or with a short one. Moreover, CD is used, for instance, at retailers for 
obtaining a last-mile distribution (Boysen & Fliedner, 2010). This model is used the companies such as Grupo 
Familia or Sodimac, which allows them to have a reduction in transportation costs (Siguenza, 2016).

Within traditional logistics, there are five standard processes in storing: reception, sorting, storing, recovery, 
and delivery (Boloori Arabani et al., 2010). When using a CD platform, it is expected to lower the storing and 
recovery times; therefore, eliminating their associated costs. To achieve these benefits at a CD platform, different 
activity scheduling problems need to be solved. One of the most common ones is determining the order at which 
the inbound and outbound trucks need to be served, as well as the assignation of the trucks at the docks. This 
decision is made aiming a synchronization between both inbound and outbound trucks that allows the reduction 
of waiting times for the trucks, their unnecessary displacement, or their temporary storing (Boysen et al., 2010).
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Given to current challenges in the companies, they are looking for alternatives to be more competitive. 
Within the alternative, there is the mutualization of resources for reducing operational and investment costs. 
Car manufactures are among some of the examples for mutualization. For instance, the alliance Renault-Nissan 
wherein the negotiation with the shipping companies is carried out conjunctively. This allows them to distribute 
their cars globally at better rates (Automotive Logistics, 2010). Another example comes from the principality of 
Monaco where policymakers created an urban platform for all of the distributers to the principality for complying 
with vehicle mobility restrictions within the city (Paché, 2008).

Following current trends on mutualization of logistics resources, this work solves a truck-scheduling 
optimization problem for a CD platform that mutualizes its docks with other allied companies. This problem 
is inspired by a real problem where a company owning a CD platform has a set of requirements for leasing its 
loading and unloading docks for a determined period to allied companies. Considering that the availability of 
the docks depends on the schedule of the inbound and outbound trucks belonging to the company, the decision 
of whether requirements are accepted or not need to be made along the truck scheduling decisions. The latter 
consists in defining the order in which the inbound and outbound trucks are served, as well as their assignation 
to a loading or unloading dock. The decisions for accepting requirements and scheduling the company’s trucks 
need to be made in a way that minimize the total cost, which is defined as the truck-waiting costs minus the 
benefit that can be received with taking in requirements. In this problem, it is assumed that all the trucks have 
an arrival time and that all the inbound and outbound docks are mutually exclusive.

Regarding the objective function, it is important to clarify as follows. Even though within the objective function 
there is the income for accepting requirements, for the real operation that inspired this problem, the waiting 
cost is significantly higher than the income for accepting requirements. These incomes have to be interpreted 
more as a subsidy on the operational cost. Therefore, this work opted for minimizing the difference between 
the costs and the incomes. Furthermore, within the operation that inspired this problem, the costs associated 
with the platform are fixed (regardless of the scheduling for the trucks); consequently, the only cost that needs 
to be accounted for is the waiting cost associated with the trucks, which is representative.

For solving this problem, a Mixed-Integer Linear Programming (MILP) formulation is proposed. To evaluate 
the MILP formulation, we generated 128 instances based on a real operation from a retail company. Despite 
the instances coming from an industrial scale, our MILP formulation was capable of optimally solving 65/128 
instances on a commercial solver with an average time of 5 minutes. For the remaining instances, our MILP 
formulation obtained an average optimally gap of 8.95% within a maximum time of 180 minutes. In practical 
terms, for the daily scheduling of a CD operation, this result is acceptable. The company that inspired this 
problem can run the MILP formulation every day, early in the morning, with a maximum limit time of 180 
minutes; finding an optimal solution in half of the cases before the time limit or having a solution with an 
optimally gap relatively low within this time.

The rest of this paper is organized as follows: Section 2 presents a literature review associated to the problem 
at hand. Section 3 formally describes the problem and introduces the MILP formulation. Section 4 presents the 
computational study. Finally, Section 5 shows the conclusions.

2. Literature review

Optimization problems associated with CD platform operations have been studied by many authors in the 
literature. According to Buijs et al. (2014), these problems can be classified into strategical, tactical, and operational 
problems depending on the decisions that are made. Among the strategical decisions, there are those related to 
the design of the distribution network that integrates the operations of the CD platforms or the design of the 
CD platform’s inner operation. Among the tactical decisions, there is the planning of the capacity in terms of the 
estimation of the needed resources (i.e., personnel and equipment) for handling an expected volume of goods. 
Finally, among the operational decisions, there are the programming of the resources within the platform, the 
assignment of the trucks to the docks, the order for tending to the trucks, among others (Buijs et al., 2014). 
Considering that the problem at hand is classified as an operational problem, the literary review will focus on 
the operational problems on truck scheduling. Moreover, considering that the novelty of this study is connected 
to the mutualization of the CD docks, some logistics-operation-mutualization cases will also be reviewed.

Hereafter, we will review the works that focus on operational problems, which are closest to this study. Yu & 
Egbelu (2008) studied the problem of finding the sequence of the trucks and their assignment to the docks in a 
way that minimize the makespan CD’s operation. For solving this problem, the authors propose three different 
approaches, a MILP formulation, an exhaustive enumeration, and a heuristic method. The latter is used for 
solving medium and large-size problems. Conversely, Bozer & Carlo (2008) studied a problem where a decision 
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on which truck is served at which dock is made in a way that minimize the distances for moving the goods 
inside the platform, considering the rectilinear movements from the inbound trucks till the outbound trucks. 
For solving this problem, the authors propose a MILP formulation for the Quadratic Assignment Problem (QAP) 
with rectilinear distances and a Simulated Annealing heuristic. Boysen et al. (2010) presented a truck scheduling 
problem for minimizing the activity times considering the exact moment where the deliveries need to be made for 
the different products. For solving this problem, the authors use a decomposition method, which uses dynamic 
programming and some heuristics. Finally, Molavi et al. (2018) presented a truck scheduling problem where the 
delivery date of the products is the constraint. This problem seeks to minimize the total costs associated with 
fines and late deliveries. For solving this problem, the authors propose a hybrid genetic algorithm.

In recent years, different studies focusing on collaborative logistics have been developed. Furthermore, many 
analyze how the companies can work alongside their competitors (i.e., horizontal strategy), their providers, 
and their clients (i.e., vertical strategy) (Cleophas et al., 2019). From the literature review, different cases of 
collaborative logistics can be found. For instance, Blanquart & Carbone (2010) analyzed 7 collaborative logistics 
cases, four related to production routes for mass consumption, one related to product conception, and 2 related 
to reverse logistics. The authors classify the cases into 4 families considering if the collaborators belong or not to 
the same supply chain, and if their services or products are complementary. Another example of mutualization 
in logistics is the case analyzed by Morana (2010), wherein the French press mutualizes the urban distribution 
routes, so every customer is reached. Particularly, within the context of storing and transport, there are certain 
mutualization studies. Kreng & Chen (2008) created a collaborative system in which several companies must 
produce the good in a way that they simultaneously arrive in a distribution center for being able to perform 
a joint distribution; hence, lowering costs. The same year, Paché (2008) presented experimental cases where 
collaborative logistics has been the solution. As part of their study, the authors analyzed the case of the city of 
Rochelle in France. In this case, they decided to create a distribution center in the outskirts where the providers 
deliver the merchandise to be classified and organized for further delivery in small electric vehicles. Recently, 
Makaci et al. (2017) made an empirical study of mutualized distribution centers. The authors studied 7 cases 
of French companies by carrying out surveys with the people involved in the processes. The authors found that 
sharing the transportation and storing operations represented a great advantage.

Despite the existence of several studies on truck scheduling problems for CD platforms and mutualization 
in logistics, to our knowledge, the literature lacks a study on scheduling problems with mutualization in a CD 
platform. The main contribution of this study is to include the option of leasing the loading and unloading 
docks of the CD platform for a determined period to allied companies. This option of leasing can be seen 
as a mutualization operation because allied companies can use a resource of the company and in turn, the 
company can receive a benefit. Considering the option of leasing the docks change significantly the scheduling 
optimization problem for CD platforms because it is necessary adding new decision variables and constraints, 
and modifying the objective function.

3. Truck scheduling problem at a CD platform with mutualized operations

3.1. Problem description

In this section, a formal description of the problem at hand is presented. Let I  and O  be the set of inbound 
and outbound trucks from the company owning the platform. Let N  and M  be the set of loading and unloading 
docks, respectively, which are independent. Let P  be the set of a type of products that circulate through the 
CD platform and R  the set of dock leasing requirements from the allied companies. Each unloading truck  i I∈  
has the following parameters: the arrival time to the platform ire , the waiting cost at the platform if , and 
the quantity of units that are unloaded at a platform ikq  (measured in units) of the product  k P∈ . Similarly, 
each loading truck  j O∈  has the following parameters: the arrival time to the platform jrs , waiting cost at 
the platform per time unit jg

, and quantity of units that are loaded onto the truck jkd  (measured in units) 
of the product  k P∈ . Considering that the loading and unloading docks are connected by a conveyor belt, the 
time it takes to transport a type of product unloaded from a truck  i I∈  until a truck  j O∈  is constant, and 
it is defined by the parameter t . Furthermore, the parameter s  represents the time to change a truck at the 
dock. The parameters e  and o  represent the unloading and loading time per unit, respectively. Each possible 
requirement  l R∈  demands an inbound and outbound dock, for a defined period of time within the time interval 
[ la  and lb ]. The income for accepting requirement  l R∈  is defined as lp .
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In this problem, the objective is to find the order in which the inbound and outbound trucks are served, 
their assignation to a loading or unloading dock, and to accept or not accept the requirements from allied 
companies, in a way that the total cost is minimized. The latter is defined as the waiting cost minus the income 
due to accepting requirements.

To give the reader a better perspective of our problem, we present an illustrative example. For this example, 
we assume the following sets: { } { } { } { }1, 2 , 1, 2, 3 , 1, 2, 3 , 1, 2, 3, 4N N N M M M M I IT IT IT O OT OT OT OT= = = =  and { }1, 2R R R= . 
Figure 1 shows a solution to the example. In this case, only the requirement 2R  was accepted, and it was 
scheduled at the inbound dock 2N  and outbound dock 2M . Inbound trucks  3IT  and 1IT  were unloaded at 
unloading dock 1N . Inbound truck  2IT  was unloaded at unloading dock 2N . Outbound trucks 4OT  and 1OT  
were loaded at dock 1M . Both trucks needed products from inbound trucks  3IT  and 1IT , for that reason their 
loading operation starts after the unloading operation finishes of trucks  3IT  and 1IT . Outbound trucks 2OT  
and 3OT  were loaded at docks 3M  and 2M  respectively. Both trucks needed products from the inbound trucks
 2IT , for that reason their loading operation starts after the unloading operation finishes of the trucks  2IT .

Figure 1. Illustrative example.

3.2. Mathematical model

For the MILP formulation, we introduced the sets { }0  I I′ = ∪  y { }0O O′ = ∪ , where the element { }0  represents 
a dummy truck. Both sets allow defining the precedence decision variables considering that truck { }0  will always 
be the first truck served. Additionally, we introduced the parameter BigM , which represents a big number. In 
this mathematical model, we used the following decision variables: variable ijhσ  is equal to 1 if the inbound 
truck 'i I∈  precedes inbound truck 'j I∈  at unloading dock h N∈  given that i j≠  and 0 otherwise. Variable 

ijhπ  is equal to 1 if an outbound truck 'i O∈  precedes outbound truck 'j O∈  at loading dock h M∈  given that 
i j≠ , and 0 otherwise. Variable ijλ  is equal to 1 if any type of product of the inbound truck i I∈  is moved to 
the outbound truck j O∈ , and 0 otherwise. Variables iu  and jv  represent the end time of the unloading from 
inbound truck i I∈ ’ and the loading of the outbound truck ´j O∈ . Variables iw  and jy  represent the starting time 
of the unloading from inbound truck i I∈ ’ and the loading of the outbound truck ´j O∈  respectively. Variables 

iα  and jβ  represent the waiting time of inbound truck i I∈  and the outbound truck j O∈  respectively. Variable 
ijkx  is the amount of units moved from inbound truck i I∈  to outbound truck j O∈  of the product type k P∈ .

For modeling the acceptance of requirements, the decision variable lµ  is equal to 1 if the requirement l R∈  
is accepted and 0 otherwise. Moreover, if requirements are accepted, it is necessary to know what loading and 
unloading dock will be assigned. Variables lhε  and lkθ are equal to 1 if the inbound h N∈  and outbound dock 
k M∈  docks are assigned to requirement l R∈ . On the other hand, it is necessary to be able to control that the 
accepted requirements do not overlap with any inbound or outbound truck at a given dock (i.e., a requirement 
and a truck coincide at the same time at the same dock). An alternative for avoiding the overlap is to introduce 
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a set of time that represents the horizon of the platform schedule. Using that set, we could introduce variables 
indexed in the time that represent at what moment each activity is carried out. Therefore, the overlapping can 
be controlled ensuring that almost one activity is performed at a specific moment at a given dock through 
of a constraint. The main inconvenience of this alternative is the potential impact on the computing time for 
solving the MILP formulation. This is due to the size of this set of time, which should be significantly large to 
be able to correctly model the operation. For instance, if the time horizon of the platform is 8 hours and all 
the associated parameters to time take integer values of minutes, this set of time should have all the minutes 
in the time horizon of 8 hours (i.e., {1,…,480}).

As an alternative to avoid the overlap, we use in our model the following decision variables: variable ihρ  
is equal to 1 if the inbound truck i I∈  is assigned to the unloading dock h N∈ , and 0 otherwise. Variable ihω  
is equal to 1 if the outbound truck i O∈  is assigned to the unloading dock h N∈ , and 0 otherwise. Although 
those variables can be seen as a subset of the variables ijhσ  and ijhπ , the motivation to include them is to 
facilitate the building of the overlapping constraints. In the case that the truck and a requirement are assigned 
to the same dock, the variable liδ  is equal to 1 if the inbound truck i I∈  is served first at the dock and then 
the requirement l R∈  without overlapping, otherwise,  liδ  is equal to 0 if the requirement l R∈  is served first 
at the dock and then the inbound truck i I∈  without overlapping. It is important to notice that this variable 
makes sense only when the requirement l R∈  and the inbound truck i I∈  are scheduled at the same dock. It 
means when lhε and ihρ  take the value of 1. If lhε or ihρ  are 0, the value of liδ  can be neglected. Similarly, 
the variable liδ  functions the binary variable ljτ , but in this case, it is defined for the outbound truck j O∈ . 
Considering that overlapping between requirements is a possibility, we introduced the binary variable lmhψ , 
which only makes sense if the requirements l  and m R∈  are scheduled at the same unloading dock  h N∈ . This 
variable takes a value of 1 if the requirement l  is served first and then the requirement m , and it will be 0 if 
the requirement m  is served first and then the requirement l . Finally, the binary variable lmhη  is defined for 
the loading dock  h M∈  in a similar way to the previous variable. Considering the quantity of sets, parameters 
and variables, Table 1 summarizes the notation of this problem.

The mathematical model is as follows:

    i i j j l l
i I j O l R

Min Z f g µ pα β
∈ ∈ ∈

= + −∑ ∑ ∑  (1)

The objective function (1) aims to minimize the waiting cost of the inbound and outbound trucks minus 
the benefits that can be perceived by accepting requirements.

Subject to:

                          ,  ijk ik
j O

x q i I k P
∈

= ∀ ∈ ∀ ∈∑
 (2)

                          ,  ijk jk
i I

x d j O k P
∈

= ∀ ∈ ∀ ∈∑  (3)

                          ,  ,  ijk ijx BigM i I j O k Pλ≤ ∀ ∈ ∀ ∈ ∀ ∈  (4)

Constraints (2) control that the inbound trucks are completely unloaded. Constraints (3) control that the 
outbound trucks are loaded fulfilling with their requirements. Constraints (4) assure for a positive amount of 
type of product k P∈  to be transported between trucks i I∈  and j O∈ , only when 1ijλ = .

                          i i ik
k P

u w e q i I
∈

≥ + ∀ ∈∑  (5)

                           j j jk
k P

v y o d j O
∈

≥ + ∀ ∈∑  (6)

( )0 0  1                           ,  j jhw u BigM j I h Nσ≥ − − ∀ ∈ ∀ ∈  (7)
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( )0 0  1                          ,  j jhy v BigM j O h Mπ≥ − − ∀ ∈ ∀ ∈  (8)

( )  1                           , ,  : j i ijhw u s BigM i j I h N i jσ≥ + − − ∀ ∈ ∀ ∈ ≠  (9)

( )  1                          , ,  : j i ijhy v s BigM i j O h M i jπ≥ + − − ∀ ∈ ∀ ∈ ≠  (10)

                          j iw re j I≥ ∀ ∈  (11)

Table 1. Variable and parameter definitions.

N Set of unloading docks

M Set of loading docks

I Set of inbound trucks

O Set of outbound trucks

R Set of requirements

P Set of type of products

s Time to change a truck at the dock

t Time to transport a type of product unloaded from a truck

BigM Big number

lp Income for accepting requirement  l R∈

la The starting time needed by an inbound and outbound dock for the requirement  l R∈

lb The ending time needed by an inbound and outbound dock for the requirement  l R∈
,i jre rs Arrival time to the platform of unloading truck  i I∈  and loading truck  j O∈
,i jf g Waiting cost at the platform per time unit of unloading truck  i I∈  and loading truck  j O∈

ikq Quantity of units that are unloaded at a platform of the product type k P∈  from truck  i I∈

jkd Quantity of units that are loaded of the product type k P∈  from truck  j O∈
e The unloading time per unit
o The loading time per unit

iw The starting time of the unloading from inbound truck i I∈ ’

iu The end time of the unloading from inbound truck i I∈ ’

jy The starting time of the loading of outbound truck ´j O∈ .

jv The end time of the loading of outbound truck ´j O∈

iα The waiting time of inbound truck i I∈

jβ The waiting time of outbound truck j O∈

ijkx The number of units moved from inbound truck i I∈  to outbound truck j O∈  of the product type k P∈

ijλ 1 if any type of product of the inbound truck i I∈  is moved to the outbound truck j O∈ , and 0 otherwise

lµ 1 if the requirement l R∈  is accepted and 0 otherwise

ijhσ 1 if the inbound truck 'i I∈  precedes inbound truck 'j I∈  at unloading dock h N∈  given that i j≠  and 0 otherwise

ijhπ 1 if an outbound truck 'i O∈  precedes outbound truck 'j O∈ at loading dock h M∈  given that i j≠ , and 0 otherwise

, lh lkε θ 1 if the inbound h N∈  and outbound dock k M∈  docks are assigned to requirement l R∈

liδ 1 if the inbound truck i I∈  is served first at the dock and then the requirement l R∈  without overlapping

ljτ 1 if the outbound truck j O∈  is served first at the dock and then the requirement l R∈  without overlapping

ihρ 1 if the truck i I∈  is assigned to the loading dock h N∈

ihω 1 if the truck i O∈  is assigned to the loading dock h M∈

lmhψ Which only makes sense if the requirements l  and m R∈  are scheduled at the same unloading dock  h N∈

lmhη Which only makes sense if the requirements l  and m R∈  are scheduled at the same loading dock  h M∈
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                           j jy rs j O≥ ∀ ∈  (12)

( )  1                           ,  j i ijy u t BigM i I j Oλ≥ + − − ∀ ∈ ∀ ∈  (13)

                            i i iu re i Iα ≥ − ∀ ∈  (14)

                            j j jv rs j Oβ ≥ − ∀ ∈  (15)

Constraints (5) and (6) define the end time for the unloading and loading of the inbound and outbound 
trucks, respectively. Constraints (7) and (8) define the starting time of the unloading and loading of the first 
truck at each dock. Constraints (9) and (10) define the starting time of the unloading and loading for the rest 
of the trucks (i.e., from the second truck onwards) at each dock. It is important to notice that the first vehicle 
that arrives at the dock does not incur in the time s  associated with the change of truck. Constraints (11) and 
(12) guarantee that the starting time for loading and unloading for the trucks is higher than their respective 
arrival time. Constraints (13) control for the starting time of an outbound truck j O∈  to be higher than the 
ending time of the unloading of the inbound vehicle i I∈  plus the merchandise’s moving time, given that any 
merchandise is moved between the trucks i I∈  and j O∈ . Constraints (14) and (15) define the waiting time of 
the inbound and outbound trucks.

,

1                          ijh
i I i jh N

j Iσ
∈ ≠ ∈′

= ∀ ∈∑ ∑  (16)

,

1                          ijh
i O i jh M

j Oπ
∈ ≠ ∈′

= ∀ ∈∑ ∑  (17)

, ,

 0                         ',  ijh jih
j I i j j I i j

i I h Nσ σ
∈ ≠ ∈ ≠′ ′

− = ∀ ∈ ∀ ∈∑ ∑  (18)

, ,

 0                         ,  ijh jih
j O i j j O i j

i O h Mπ π
∈ ≠ ′∈ ≠′

− = ′∀ ∈ ∀ ∈∑ ∑  (19)

0 1                          jh
j I

h Nσ
′∈

≤ ∀ ∈∑  (20)

0 1                          jh
j O

h Mπ
′∈

≤ ∀ ∈∑
 (21)

Constraints (16) and (17) assure that all the inbound and outbound trucks are served. Constraints (18) and (19) 
impose the preservation of flow for the variable ijhσ  and ijhπ . Constraints (20) and (21) control for every loading 
and unloading dock to be assigned one vehicle at most. The later constraints with the constraints (18) and (19) 
control that only one truck is served at a time at a dock.

                         l lh
h N

µ l Rε
∈

= ∀ ∈∑  (22)

                         l lh
h M

µ l Rθ
∈

= ∀ ∈∑  (23)
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1                          lh
h N

l Rε
∈

≤ ∀ ∈∑  (24)

1                          lh
h M

l Rθ
∈

≤ ∀ ∈∑  (25)

'

                           ,  ih ijh
j I

i I h Nρ σ
∈

≥ ∀ ∈ ∀ ∈∑  (26)

1                         ih
h N

i Iρ
∈

= ∀ ∈∑  (27)

                           ,  ih ijh
j O

i O h Mω π
′∈

≥ ∀ ∈ ∀ ∈∑  (28)

1                         ih
h M

i Oω
∈

= ∀ ∈∑  (29)

Constraints (22) and (23) assure that a requirement must be scheduled at an inbound and outbound dock when 
requirements are accepted. Constraints (24) and (25) control for a requirement to be assigned to one inbound and 
outbound dock at most. Constraints (26) assure that the inbound truck ihρ  takes a value of 1 if the truck i I∈  is 
assigned to the loading dock h N∈ . Constraints (27) assure that each inbound truck to be only assigned to one 
unloading dock. Constraints (28) assure that the inbound truck  ihω  takes a value of 1 if the truck i O∈  is assigned to 
the loading dock h M∈ . Constraints (29) assure that each outbound truck to be only assigned to one loading dock.

For understanding the following constraints, Figure 2 shows the possible cases when an inbound truck i I∈  
and a requirement l R∈  are assigned to the same dock h N∈ . Subfigures 2a and 2b present the feasible cases 
(i.e., there is no overlapping). When the inbound truck i I∈  is served first than the requirement l R∈  (Figure 2a) 
and when the requirement l R∈  is ahead of the inbound truck i I∈  (Figure 2b). Subfigures 2c and 2d present 
the unfeasible cases (i.e., when there is overlapping). When the truck i I∈  is served first and before finishing 
requirement l R∈  starts to be served (Figure 2c), and when the requirement l R∈  starts first and before finishing 
the truck i I∈  starts to be served (Figure 2d).

( ) ( )  1 2                          ,  ,  l i li lh iha u BigM BigM i I l R h Nδ ε ρ− ≥ − − − − ∀ ∈ ∀ ∈ ∀ ∈  (30)

( ) ( )  1 2                          ,  ,  l i li lh ihb w BigM BigM i I l R h Nδ ε ρ− ≥ − − − − ∀ ∈ ∀ ∈ ∀ ∈  (31)

( ) 2                          ,  ,  l i li lh iha u BigM BigM i I l R h Nδ ε ρ− ≤ + − − ∀ ∈ ∀ ∈ ∀ ∈  (32)

( ) 2                          ,  ,  l i li lh ihb w BigM BigM i I l R h Nδ ε ρ− ≤ + − − ∀ ∈ ∀ ∈ ∀ ∈  (33)

Constraints (30-33) guarantee that the inbound truck i I∈  and a requirement l R∈  will not overlap if they 
are assigned to the same dock h N∈ . In these constraints, the start of the requirement  la  is always compared 
against the end of the service of the truck iu , and the end of the requirement lb  against the start of the service 
of the truck iw , as presented in Figure 2. It is important to notice that the constraints will be trivially met if 

0lhε =  (i.e., the requirement l R∈  is not assigned to the dock h N∈ ) or 0ihρ =  (i.e., the truck i I∈  is not assigned 
to the dock h N∈ ). However, in the case that 1 lhε =  and 1ihρ = , for obtaining a feasible solution the inbound 
truck i I∈  and a requirement l R∈  must be scheduled as the shown cases Figures 2a or 2b. For meeting the case 
in Figure 2a (i.e., 0l ia u− ≥ , and at the same time 0l ib w− ≥ ) liδ  must take the value of 1. For meeting the case 
in Figure 2b (i.e., 0l ia u− ≤ , and at the same time 0l ib w− ≤ ) liδ  must take the value of 0. Therefore, the feasible 
case presented in Figure 2a will occur for 1liδ = , and the feasible case presented in Figure 2b will occur for 

0liδ = . It is important to notice that with these constraints, the unfeasible cases presented in Figures 2c and 2d 
will not take place.
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( ) ( )  1 2                          ,  ,  l j li lh iha v BigM BigM i O l R h Mτ θ ω− ≥ − − − − ∀ ∈ ∀ ∈ ∀ ∈  (34)

( ) ( )  1 2                          ,  ,  l i li lh ihb y BigM BigM i O l R h Mτ θ ω− ≥ − − − − ∀ ∈ ∀ ∈ ∀ ∈  (35)

( ) 2                          ,  ,  l j li lh iha v BigM BigM i O l R h Mτ θ ω− ≤ + − − ∀ ∈ ∀ ∈ ∀ ∈
 (36)

( ) 2                          ,  ,  l i li lh ihb y BigM BigM i O l R h Mτ θ ω− ≤ + − − ∀ ∈ ∀ ∈ ∀ ∈  (37)

Constrains (34-37) guarantee that the outbound truck i O∈  and a requirement l R∈  will not overlap if they 
are assigned to the same dock h M∈ . These constraints work similarly to constraints (30-33).

( ) ( )  1 2                           , ,  , l m lmh lh mha b BigM BigM l m R h N l mψ ε ε− ≥ − − − − ∀ ∈ ∀ ∈ ≠  (38)

( ) ( )  1 2                          , ,  , l m lmh lh mhb a BigM BigM l m R h N l mψ ε ε− ≥ − − − − ∀ ∈ ∀ ∈ ≠  (39)

( )  2                          , ,  , l m lmh lh mha b BigM BigM l m R h N l mψ ε ε− ≤ + − − ∀ ∈ ∀ ∈ ≠  (40)

( ) 2                          , ,  , l m lmh lh mhb a BigM BigM l m R h N l mψ ε ε− ≤ + − − ∀ ∈ ∀ ∈ ≠  (41)

( ) ( )  1 2                          , ,  , l m lmk lk mka b BigM BigM l m R k M l mη θ θ− ≥ − − − − ∀ ∈ ∀ ∈ ≠  (42)

( ) ( )  1 2                          , ,  , l m lmk lk mkb a BigM BigM l m R k M l mη θ θ− ≥ − − − − ∀ ∈ ∀ ∈ ≠  (43)

Figure 2. Possible cases of scheduling when an inbound truck i I∈  and a requirement l R∈  are assigned to the same dock h N∈ .
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( ) 2                           , ,  , l m lmk lk mka b BigM BigM l m R k M l mη θ θ− ≤ + − − ∀ ∈ ∀ ∈ ≠  (44)

( ) 2                          , ,  , l m lmk lk mkb a BigM BigM l m R k M l mη θ θ− ≤ + − − ∀ ∈ ∀ ∈ ≠  (45)

Considering that there are possibilities for the requirements l  and m R∈  to overlap at the inbound dock 
h N∈  and outbound dock k M∈ , constraints (38-41) guarantee that the requirements will not overlap with one 
another at an inbound dock. Similarly, constraints (42-45) guarantee that the requirements will not overlap with 
one another at an outbound dock. These constraints work similarly to constraints (30-33).

, , 0i i iw u α ≥                           i I∀ ∈  (46)

,j jy v ,  0jβ ≥                           j O∀ ∈  (47)

                         ,  ,  ijkx Z i I j O k P+∈ ∀ ∈ ∀ ∈ ∀ ∈  (48)

ijλ  ∈  {0,1}                          ,  i I j O∀ ∈ ∀ ∈  (49)

ihρ ∈  {0,1}                          i I∀ ∈ ,  h N∀ ∈  (50)

ihω ∈  {0,1}                          i O∀ ∈ ,  h M∀ ∈  (51)

ijhσ ∈  {0,1}                          , 'i j I∀ ∈ ,  h N∀ ∈  (52)

ijhπ ∈  {0,1}                          , 'i j O∀ ∈ ,  h N∀ ∈  (53)

lhε ∈  {0,1}                          l R∀ ∈ ,  h N∀ ∈  (54)

lhθ ∈  {0,1}                           ,  l R h M∀ ∈ ∀ ∈  (55)

liδ ∈  {0,1}                           ,  l R i N∀ ∈ ∀ ∈  (56)

liτ ∈  {0,1}                           ,  l R i O∀ ∈ ∀ ∈  (57)

lmhψ ∈  {0,1}                          ,  ,  l m R h N∀ ∈ ∀ ∈  (58)

lmhη ∈  {0,1}                          ,  ,  l m R h M∀ ∈ ∀ ∈  (59)

Constraints (46 – 59) define the domain of the decision variables.

4. Computational experiments

Aiming to evaluate the performance of the MILP formulation in solving the studied problem, we used a set 
of instances based on a real operation from a retail company. This company operates under a CD operation, 
and it has the capability of leasing some of the docks in its platform to allied companies. In this experiment, 
we analyzed the behavior of the MILP formulation performance in terms of the different characteristics of the 
problem. The MILP formulation was solved using Gurobi 8.1.1 with a time limit of 10,800s for each instance. 
All the experiments were run on a computing cluster with Intel Xeon E5-2683 v4 processor (32 cores at 2.1 
GHz) and 64 GB of RAM, both running on Linux Rocks 6.2-64 bits – Centos 6.6.
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4.1. Test instances

We generated a set of 128 instances inspired by the real operation or a retail company. Aiming to obtain 
different size instances, we generated instances with different amounts of unloading |N| and loading |M| docks, 
inbound |I| and outbound |O| trucks, requirements |R|, and product types |P|. Table 2 contains the values of 
the parameters used in the generation of the instances. The magnitude of the used parameters is based on the 
information from the real operation. Using these values, we obtained 64 combinations. From each combination, 
we generated 2 instances; hence, obtaining 128 instances. The magnitudes of arrival time of the trucks, vehicle 
change time, moving time between loading and unloading docks, loading and unloading rate, and the amount 
of units per product were randomly generated using magnitudes from the real operation.

Table 2. Parameters for the generation of the instances.

Parameter Nomenclature Value

Unloading docks |N| {2, 4}

Loading docks |M| {4, 6}

Inbound trucks |I| {4, 8}

Outbound trucks |O| {8, 16}

Requirements |R| {10, 20}

Product types |P| {20, 40}

4.2. Results

In this section, we analyze the computational results about the performance of the MILP formulation. The 
detailed results for each instance are documented in Table A1. Table 3 shows the results consolidated from the 
instances wherein the model reached the optimal solution. Row 1 presents how many instances were optimally 
solved, and rows 2-5 present the information concerning average, maximum, minimum computational times, 
and the standard deviation (in seconds), respectively. Results in Table 3 demonstrate that the MILP formulation 
is capable of finding the optimal solution for 65/128 instances. The maximum CPU time of these 65 instances 
was 8103 seconds, which is a reasonable time and meets the expectations of the operation for the company 
that inspired this study.

Table 3. Optimal solution results.

Metric Value

Number of optimal solutions 65

Average CPU time (sec.) 329.75

Maximum CPU time (sec.) 8103

Minimum CPU time (sec.) 0.86

Standard deviation (sec) 1,069

Figure 3 presents the behavior of the number of optimal solutions found within the time. As seen in Figure 3, 
we observe that 91% of the optimal solutions have been found within 958 seconds, which also allows us to 
conclude that the MILP formulation behaves in an acceptable way.

Table 4 shows the results for the instances that did not find an optimal solution (63/128). As seen in Table 4, 
the average optimality gap is 8.95%, the maximum gap is 38%, the minimum gap is 0.06%, and the standard 
deviation is 7.9%. Analyzing the results in detail, we found that 25 of the instances wherein an optimal solution 
was not reached have a gap lesser than 5%. Despite not finding the optimal solution in these instances, the 
behavior of the gap is acceptable for the problem at hand.
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Hereafter, we analyze the behavior of the optimality gap according to the characteristics of the problem. 
Figures 4 and 5 present the optimality gap for |P|=20 and |P|=40, respectively. In both figures, the X axis 
presents the loading docks and the outbound trucks; the Y axis presents the loading docks and the inbound 
trucks. The gray and black colored circles represent the problems with |R|=10 and |R|=20, respectively. The size 
of the circles represents the value of the optimality gap.

Table 4. Results of the instances that did not reach an optimal solution.

Metric Value

Average optimality gap 8.95%

Maximum optimality gap 38.38%

Minimum optimality gap 0.06%

Standard deviation (%) 7.9%

Figure 3. Number of optimal solutions found within time.

Figure 4. Behavior of the optimality gap as a function of the characteristics of the instances with |P|=20.



Production, 32, e20210091, 2022 | DOI: 10.1590/0103-6513.20210091 13/17

After comparing Figures 4 and 5, there is no notable impact of the optimality gap behavior in terms of the 
number of product types. Nonetheless, the average gap for the instances |P|=20 and |P|=40 is 3.71% and 5.10%, 
respectively. This result shows that, in average, the instances with 40 products are more difficult to solve than 
the instances with 20 products. As expected, there is a low optimality gap when the number of requirements is 
|R|=10 when compared with |R|=20. Conversely, the results do not show that there is a low optimality gap value 
when there are less inbound or outbound docks. Both Figures 4 and 5 show cases wherein a higher number of 
outbound docks have a lower optimality gap value. For instance, in Figure 4, when the instances have 6 loading 
docks, the optimality gap is generally lower than when the instances have 4 loading docks. Figure 5 shows that 
for instances |I|=8 and |O|=16, the optimality gap is lower when |N|=4 than |N|=2. This behavior, having a 
higher optimality gap for fewer docks, can be attributed to the fact that the problem becomes more constrained; 
hence, more difficult to solve. Regarding the number of outbound trucks, the results show that the optimality 
gap tends to increase when there are more outbound trucks. Nonetheless, this phenomenon is not evident with 
the inbound trucks. In some cases, the more inbound trucks there are, the better the optimality gap. This case 
can be seen in Figure 5 with |M|=6, |N|=4, and |O|=16, where the optimality gap is lower for |I|=8 than |I|=4.

Lastly, we analyzed the solutions in terms of the accepted requirements. The solutions showed that all 
the solutions accept requirements. We found that, in average, 48% of the requirements are accepted, and in 
one instance, all the requirements were accepted. These results show that, for the operation that inspired this 
problem, it is interesting to lease the docks to allied companies as a way to subsidize the operational costs.

5. Conclusions

This study proposes a new scheduling problem for a CD platform. This problem aims to find the scheduling 
of both inbound and outbound trucks for the company owning the platform while deciding whether or not 
to accept requirements to lease their docks to allied companies. In the case of accepting the requirements, it 
has to be decided which docks will be assigned. These decisions have to be made in a way that minimize the 
operational cost minus an income due to the leasing.

For solving this problem, we propose a MILP formulation. To test this MILP formulation, we built a set of 
128 instances, which are based on a real CD operation. Through a computational experiment, we found that 
the MILP formulation has an acceptable behavior. Using a commercial solver, the MILP formulation is capable 
of finding 65/128 optimal solutions with an average time of 4.41%. For the remaining 63/128 instances, the 
MILP formulation obtains an optimality gap of 8.95% in 10800 seconds. For the real case that inspired this 
study, these results are acceptable given that the scheduling of the trucks is done during the night hours of 
the day prior to the operation. When analyzing the solutions, we found that 128/128 instances accepted the 
requirements. Therefore, we can conclude that, for the company that inspired this problem, it is economically 
interesting to lease some of its docks to allied companies.

Figure 5. Behavior of the optimality gap as a function of the characteristics of the instances with |P|=40.
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Interesting research directions include considering other resources of the CD platform for leasing such as 
people and lift trucks. Another interesting research direction is to include in this problem the routing decisions 
of the trucks, especially those of the outbound trucks.
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Appendix 1. Detailed results.

Table A1 presents the detailed results for the computational experiment from the MILP formulation. 
Column 1 presents a consecutive number for each of the instances, columns 2 – 7 present the parameters for 
the generated instances, column 8 shows the optimality gap, column 9 presents the CPU time, and column 10 
presents the objective function value.

Table A1. Detailed results.

Instance ID

Parameters Results

|I|: |O|: |P|: |N|: |M|: |R|: Gap
CPU time 

(s)
Objective 
function

1 4 8 20 2 4 10 0.00% 1.24 312,858.00

2 4 8 20 2 4 20 0.01% 70.95 255,583.00

3 4 8 20 2 6 10 0.00% 5.92 564,898.00

4 4 8 20 2 6 20 0.00% 15.42 345,280.00

5 4 8 20 4 4 10 0.00% 1.15 865,803.00

6 4 8 20 4 4 20 0.00% 5.34 138,327.00

7 4 8 20 4 6 10 0.00% 0.91 492,354.00

8 4 8 20 4 6 20 0.00% 6.52 328,345.00

9 4 8 40 2 4 10 0.00% 2.78 708,240.00

10 4 8 40 2 4 20 0.00% 5.4 629,168.00

11 4 8 40 2 6 10 0.00% 5.59 591,834.00

12 4 8 40 2 6 20 0.01% 6.35 603,579.00

13 4 8 40 4 4 10 0.00% 1.66 573,601.00

14 4 8 40 4 4 10 0.00% 0.86 406,284.00

15 4 8 40 4 6 10 0.00% 1.2 935,785.00

16 4 8 40 4 6 20 1.38% 10800 652,717.00

17 4 16 20 2 4 10 1.05% 10800 835,855.00

18 4 16 20 2 4 20 12.40% 10800 835,566.00

19 4 16 20 2 6 10 8.18% 10800 771,120.00

20 4 16 20 2 6 20 0.00% 249.25 380,905.00

21 4 16 20 4 4 10 6.91% 10800 719,676.00

22 4 16 20 4 4 20 19.18% 10800 951,634.00

23 4 16 20 4 6 10 10.38% 10800 187,914.00

24 4 16 20 4 4 20 27.28% 10800 690,746.00

25 4 16 40 2 4 10 9.04% 10800 1,428,986.00

26 4 16 40 2 4 20 4.24% 10800 1,783,752.00

27 4 16 40 2 6 10 7.52% 10800 912,581.00

28 4 16 40 2 6 20 4.86% 10800 1,095,480.00

29 4 16 40 4 4 10 10.81% 10800 819,178.00

30 4 16 40 4 4 20 3.23% 10800 1,194,469.00

31 4 16 40 4 6 10 5.61% 10800 1,437,353.00

32 4 16 40 4 6 10 2.75% 10800 1,202,794.00

33 8 8 20 2 4 10 0.01% 70.98 844,308.00

34 8 8 20 2 4 20 0.00% 23.96 546,287.00

35 8 8 20 2 6 10 0.00% 88.46 917,993.00

36 8 8 20 2 6 20 0.00% 41.25 673,694.00

37 8 8 20 4 4 10 0.01% 2054.39 497,865.00

38 8 8 20 4 4 20 0.00% 1404.75 350,849.00

39 8 8 20 4 6 10 0.06% 10800 294,047.00

40 8 8 20 4 6 20 0.00% 80.42 642,000.00

41 8 8 40 2 4 10 0.00% 368.2 1,058,835.00

42 8 8 40 2 4 10 0.01% 1161.51 886,919.00

43 8 8 40 2 6 10 0.00% 15.93 1,135,549.00

44 8 8 40 2 6 20 0.00% 22.66 1,142,830.00

45 8 8 40 4 4 10 0.00% 33.28 544,765.00

46 8 8 40 4 4 20 4.36% 10800 927,428.00

47 8 8 40 4 6 10 0.00% 39.96 464,805.00

48 8 8 40 4 6 20 0.00% 154.18 1,030,667.00
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Instance ID

Parameters Results

|I|: |O|: |P|: |N|: |M|: |R|: Gap
CPU time 

(s)
Objective 
function

49 8 16 20 2 4 10 5.91% 10800 1,488,440.00

50 8 16 20 2 4 20 3.64% 10800 911,947.00

51 8 16 20 2 6 10 0.60% 10800 1,334,189.00

52 8 16 20 2 6 20 2.44% 10800 1,040,312.00

53 8 16 20 4 4 10 19.45% 10800 810,105.00

54 8 8 20 4 6 20 0.00% 110.78 1,073,301.00

55 8 16 20 4 6 10 1.62% 10800 533,236.00

56 8 16 20 4 4 20 19.72% 10800 542,777.00

57 8 16 40 2 4 10 27.40% 10800 2,292,650.00

58 8 16 40 2 4 20 9.87% 10800 1,787,240.00

59 8 16 40 2 6 10 13.60% 10800 2,066,403.00

60 8 16 40 2 6 20 0.41% 10800 1,414,612.00

61 8 16 40 4 4 10 16.10% 10800 1,763,647.00

62 8 16 40 4 4 20 11.98% 10800 1,337,360.00

63 8 16 40 4 6 10 4.81% 10800 1,218,799.00

64 8 16 40 4 6 20 0.62% 10800 868,508.00

65 4 8 20 2 4 10 0.00% 1.06 505,126.00

66 4 8 20 2 4 20 0.00% 8.65 646,574.00

67 4 8 20 2 6 10 0.00% 2.22 527,179.00

68 4 8 20 2 6 20 0.00% 16.56 524,141.00

69 4 8 20 4 4 10 0.00% 5.06 202,053.00

70 4 8 20 4 4 20 0.00% 32.48 301,253.00

71 4 8 20 4 6 10 0.00% 2.28 219,005.00

72 4 8 20 4 6 20 0.00% 19.17 428,856.00

73 4 8 40 2 4 10 0.00% 77.35 127,437.00

74 4 8 40 2 4 20 0.01% 198.05 815,770.00

75 4 8 40 2 6 10 0.00% 3.24 701,028.00

76 4 8 40 2 6 20 0.00% 5.86 583,738.00

77 8 8 40 4 6 20 0.01% 1692.53 426,410.00

78 4 8 40 4 4 20 0.00% 4.3 500,186.00

79 4 8 40 4 6 10 0.00% 1.97 660,610.00

80 4 8 40 4 6 20 0.00% 3.28 211,708.00

81 4 16 20 2 4 10 5.87% 10800 1,796,690.00

82 4 16 20 2 4 20 16.68% 10800 585,802.00

83 4 16 20 2 6 10 0.01% 234.26 832,645.00

84 4 16 20 2 6 20 6.85% 10800 623,745.00

85 4 16 20 4 4 10 0.01% 8103.08 844,798.00

86 8 16 20 4 6 20 3.16% 10800 742,344.00

87 4 16 20 4 6 10 0.01% 958.22 541,751.00

88 8 16 20 4 6 20 0.95% 10800 788,795.00

89 4 16 40 2 4 10 6.33% 10800 490,816.00

90 4 16 40 2 4 20 5.83% 10800 892,754.00

91 4 16 40 2 6 10 10.89% 10800 1,044,698.00

92 4 16 40 2 6 20 2.31% 10800 751,663.00

93 4 16 40 4 4 10 10.93% 10800 1,550,992.00

94 4 16 40 4 4 20 38.38% 10800 344,941.00

95 4 16 20 4 6 20 7.53% 10800 736,943.00

96 4 16 40 4 6 20 11.85% 10800 551,485.00

97 8 8 20 2 4 10 0.00% 405.39 513,908.00

98 8 8 20 2 4 20 0.01% 258.47 606,950.00

99 8 8 20 2 6 10 0.00% 228.94 1,014,807.00

100 8 8 20 2 6 20 0.00% 48.66 608,272.00

101 8 8 20 4 4 10 0.00% 5.85 299,956.00

102 8 8 20 4 4 20 8.37% 10800 405,949.00

Table A1. Continued...
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Instance ID

Parameters Results

|I|: |O|: |P|: |N|: |M|: |R|: Gap
CPU time 

(s)
Objective 
function

103 8 8 20 4 6 10 0.00% 14.93 466,094.00

104 4 16 20 4 6 20 7.78% 10800 1,293,690.00

105 4 16 40 4 6 20 17.27% 10800 649,728.00

106 8 8 40 2 4 20 0.01% 53.75 461,588.00

107 8 8 40 2 6 10 0.00% 43.23 855,876.00

108 8 8 40 2 6 20 0.01% 1232.06 813,503.00

109 8 8 40 4 4 10 0.00% 72.47 547,090.00

110 8 8 40 4 4 20 0.01% 945.76 457,167.00

111 8 8 40 4 6 10 0.00% 261.11 879,908.00

112 8 8 40 2 4 20 0.01% 354.82 1,101,907.00

113 8 16 20 2 4 10 4.99% 10800 1,129,864.00

114 8 16 20 2 4 20 2.47% 10800 1,525,942.00

115 8 16 20 2 6 10 1.59% 10800 906,274.00

116 8 16 20 2 6 20 0.00% 83.88 652,993.00

117 8 16 20 4 4 10 21.05% 10800 892,154.00

118 8 16 20 4 4 20 11.37% 10800 745,172.00

119 8 16 20 4 6 10 0.20% 10800 823,104.00

120 8 16 40 4 6 20 1.42% 10800 706,096.00

121 8 16 40 2 4 10 12.19% 10800 1,754,913.00

122 8 16 40 2 4 20 10.33% 10800 1,239,179.00

123 8 16 40 2 6 10 27.34% 10800 2,007,234.00

124 8 16 40 2 6 20 3.23% 10800 1,257,199.00

125 8 16 40 4 4 10 7.48% 10800 1,133,588.00

126 8 16 40 4 4 20 17.23% 10800 1,215,819.00

127 8 16 40 4 6 10 4.79% 10800 1,164,960.00

128 4 8 40 4 4 20 0.00% 3.68 716,780.00

Table A1. Continued...


