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1. Introduction

The manufacturing sector is one of the biggest energy consumers in the world. Some studies show that 
more than one-third of the overall consumed energy is attributed to industrial use (International Energy Agency, 
2017). On the one hand, current energy policies impact energy costs. The excessive costs drive manufacturers 
to seek solutions for more sustainable production with less environmental impacts, such as reducing energy 
consumption. On the other hand, customers demand multiple functionalities for their products with higher 
quality than in the past. Therefore, today’s manufacturers need to think of new criteria and approaches for 
improving the quality of their products while saving energy at the same time.

In manufacturing, the objective of a process is the creation of value with a predefined quality (Deutsches 
Institut für Normung, 2015). A manufacturing process under particular settings consumes a certain amount 
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of energy. In practice, the potential for energy savings depends on the type of products to be manufactured, 
their requested quality and the process settings. In this study, interviews with manufacturing companies were 
the basis of the first understanding of product specifications and operating conditions. Further, as the energy 
consumption of manufacturing processes is in focus, several challenges have to be overcome. The following 
difficulties are observed in the industry sectors of feed manufacturing, food processing and waste management:

Challenge 1: Lack of transparency about energy use. There is no precise mechanism to access real energy 
consumption or no clear understanding of the term energy efficiency (EE); for example, which manufacturing 
process demands the most energy and what parameters (variables) affect the energy consumption of the respective 
process. Therefore, there is a need for more visibility of energy information.

Challenge 2: Need for structured product and process-related data. When it comes to product and process data, 
knowledge about the product’s behaviour in combination with the process is based on the employees’ experience. 
Moreover, data are not available in a structured way. Data can be a crucial enabler in achieving energy efficiency. 
Process-specific data can be recorded through sensors in manufacturing processes. Yet, collecting the correct 
production data regarding energy consumption is often missing. Moreover, even if the structured data are available, 
there is a need to ensure data quality, right feature selection, transferability and sharing.

Challenge 3: Reliability on measurable values. A lack of employees’ sensibility to energy saving potentials, fear of 
negatively influencing the manufacturing processes, and no time to care for energy efficiency due to day-to-day 
business are issues that manufacturers face when they initiate energy-saving strategies. Moreover, sensors as 
electrical devices can fail or be damaged in specific cases.

Challenge 4: Adapt to future digitalisation and automating manufacturing processes. Workflow in future 
manufacturing plants tends to be upgraded to digital or automatic. Therefore, the manufacturers should get 
ready for this change. When digital technologies are planned, there is often no practical guideline or standard 
available for selecting proper technologies and application of respective methods.

This paper proposes a 5-step approach for addressing the mentioned challenges. The focus of improving 
energy efficiency is through using data from manufacturing processes and applying machine learning methods. 
Machine learning (ML) methods can be used for learning complex relationships from massive production data 
and converting them into a basis for decisions and actions (Hecker et al., 2017). Decisions and activities in the 
current paper address understanding energy consumption in existing processes under particular settings for 
adjusting process parameters. The reason for choosing ML is that it is possible to find complex patterns in data by 
understanding the relationships between process conditions, energy, and product quality through these methods.

The 5-steps approach contributes to developing machine learning systematically, from collecting, pre-processing, 
modelling with ML, deployment and thus, using production-related data. These steps contribute to answering 
the question of energy savings for the same product quality at existing processes. Within each step, this paper 
identifies the technical challenges of ML and presents a path for their implementation.

This paper is structured as follows: Section 2 provides the state of the art of research in energy-efficient 
manufacturing (EEM) and frameworks for implementing ML in industry. Section 3 shows the research methodology 
of this paper. Section 4 provides the 5-step approach for increasing energy efficiency through ML. Section 5 
shows a case study of the implementation of 5-steps. Finally, section 6 provides an evaluation of the approach 
and discusses its generalisation. Section 7 draws the conclusions.

2. State of the art

This section defines the terms energy efficiency and manufacturing processes firstly, to show the boundaries 
and viewpoint of this paper. The definitions are selected from the literature. Next, subsections 2.1 and 2.2 review 
the relevant state of the art of the research.

Energy efficiency: Is defined as “[...] reducing the consumption of energy, which refers to energy efficiency 
from an engineering point of view” (Irrek & Thomas, 2008, p. 1). The German Engineers society defines energy 
efficiency as “[...] the relationship between the result and the energy used” (Verein Deutscher Ingenieure, 2019, 
p. 2). The goal of this paper in terms of energy efficiency can be concretely stated as “to decrease the specific 
energy consumption of a processing unit while preserving the quality of end product”. Therefore, only the direct 
energy used by a processing unit is considered in this paper. Often, valid data on indirect energy consumption 
is insufficiently available. On the one hand, it is essential to preserve the quality of the end product at a level 
in which the customer is satisfied and product specifications are not negatively affected. On the other hand, 
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reducing specific energy consumption can adversely affect product quality. Therefore, an optimised state can 
be achieved through modelling and better control of manufacturing processes.

Manufacturing processes: The purpose of a process is the creation of material goods (Deutsches Institut für 
Normung, 2015). In manufacturing, these goods are referred to as products. A product represents an output in 
the marketplace, which satisfies the customer’s needs. Notably, in this paper, the transformation of a particular 
product A into a specific product B during a process will be analysed from the energy perspective.

2.1. Increasing energy efficiency in manufacturing

For energy management and successful implementation of energy efficiency programs, standards such as 
ISO 50001 for energy management (International Organization for Standardization, 2018) and DIN EN 16247 
(Tuev, 2020; Bundesamt für Wirtschaft und Ausfuhrkontrolle, 2020), for the planning and implementation of 
energy audits, already exist. Several manufacturers prefer DIN EN 16247 because it provides a simplified version 
of energy management systems and focuses more on the practical implementation of measures for energy 
efficiency. Although ISO and DIN standards for energy and environmental management exist, there is still less 
focus on standards of data-driven approaches for conserving energy.

In contrast to general standards, increasing energy efficiency through quantitative or data-driven analysis 
is recently gaining more attention. Among journal publications, Narciso & Martins (2020) presents a review of 
machine learning tools for energy efficiency in the industry. Ahmad et al. (2022) address artificial intelligence 
(AI) as a driver for recent technologies, which are influencing energy systems. They conduct a review of AI 
applications in the energy value chain. Blesl & Kessler (2018), Herwig (2016) and Thiede (2012) give insights into 
energy analysis and management through methods, such as process modelling, simulation and thermodynamics. 
Potentials for manufacturing energy conservation through data-driven approaches are reported in Song et al. 
(2018) and Nabati et al. (2020).

Some other authors have also provided frameworks. For instance, a framework for systematically measuring 
resource consumption and later guiding decisions for optimising material and energy flows are proposed in 
Zhong et al. (2016) and Seow & Rahimifard (2011). DuttaGupta (2017) provides a conceptual framework for 
using machine learning for energy efficiency in small and medium-sized (SME) manufacturers. Mills et al. 
(2008) formulate best practices for defining strategies for energy-efficient manufacturing. However, they 
all do not prioritise the energy analysis in higher consumers (machines) or energy-intensive manufacturing 
environments. If energy costs exceed  of total turnover, the manufacturing companies are considered energy-
intensive (Gleich et al., 2012).

Recently Tan et al. (2021) published a framework called “machine learning for smart energy”. Their paper 
addresses principal issues such as numerous machines, energy disaggregation per machine, state and complexity 
of processes.

In general, suggestions of appropriate techniques of ML, frameworks from practical experiences, means of 
deployment and effectiveness of the results of data-driven analyses for energy efficiency are not adequately 
addressed.

2.2. Data science frameworks for manufacturing

In this section, an overview of available data science frameworks is exhibited. These frameworks are selected 
based on the following criteria: (1) they can be used for applications of ML in EEM, (2) they provide a focus 
on processes or (3) they use the latest technologies in ML or related fields.

Cross-Industry Standard Process for Data Mining (CRISP-DM) (IBM, 2011) is a standard for applying techniques 
of ML to the industrial context. The methodology of CRISP-DM divides the process of data mining into five 
phases: business understanding, data preparation, data modelling, evaluation and deployment. Among data science 
frameworks, CRISP-DM is the mainly applied ML framework in manufacturing; for example, see Thiede et al. 
(2020). Although this standard is valid, it describes the data science life cycle with no specific focus on energy 
efficiency for processes. SEMMA and KDD (Pyvovar, 2019) are other data mining frameworks (see Figure 1). 
However, CRISP-DM is more comprehensive than them. Other standards, such as DevOps (DevOps, 2020) and 
Scrum (Scrum Alliance, 2015) can address the development of ML as software in an agile working environment 
as well as provide IT infrastructure for ML. ISO quality management standard (Deutsches Institut für Normung, 
2015) guides through the management and organisational aspects of IT in manufacturing projects. MetaFlow, 
established by Netflix, addresses the deployment of machine learning for long-term use (Metaflow, 2021). 
Machelangelo (Uber, 2017) includes the application of ML/AI for solving special applications in transportation. 
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Very recently, as of 2022, a new framework AutoML (AutoML, 2022; Azure, 2022) is introduced to automatise 
the ML process. In this direction, MLOps (MLOps, 2022) paves the way to apply agile methodologies in ML-model 
development, which can contribute to faster development cycles. Although the mentioned research from the 
literature provides unique approaches and solutions for the practical application of machine learning, the 
adaption of frameworks to EEM is still missing.

Figure 1 shows the relation of previous frameworks to EEM. These relations are used for developing the 
approach of this research. Among all the data science frameworks, CRISP-DM has a more structured way for the 
application to EEM. On top of data science frameworks, business understanding of the manufacturing processes 
and domain knowledge for increasing energy efficiency are added to this approach.

3. Research approach

Figure 2 demonstrates an overview of the research approach. To establish the approach of this research for 
increasing energy efficiency in manufacturing through ML, the initial focus is to understand the manufacturing 
processes and their challenges. Here, research methods are case studies and brainstorming sessions (workshops) 
with manufacturers of the process industries. Research projects with three companies in the processing sector, 
interviews with their plant employees and management, as well as several meetings were held (Alvela Nieto et al., 
2019, 2021). The challenges for reaching energy efficiency in manufacturing are extracted and reported in section 1.

Figure 1. Current ML frameworks and their relation to EEM.

Figure 2. Research approach.
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The research approach to design the 5-steps was constructed partly from state of the art and partly from 
industrial projects. Each of the five-step involves several technical challenges for the application of ML, namely, 
reaching the goal of reducing the specific energy consumption of a manufacturing process while preserving 
the quality of the end product. The major technical challenges of ML for EEM to reach this goal are reported 
within each of the five steps in the next sections. While considering the technical challenges of ML, this paper 
provides examples of a possible solution to each technical challenge in section 4.

4. 5-steps approach to the implementation of ML methods for improving energy 
efficiency in processes

Many of the data science frameworks presented in section 3 deal exclusively with specific steps shown in 
Figure 3, such as steps 2 -”data integration”, step 3 -”modelling”, and step 4 -”optimisation”. These frameworks 
are integrated into the 5-step approach presented in this paper. However, they require an extension to address 
application-specific challenges and a continuous improvement of the manufacturing process based on production 
data. In this research, the 5-step approach additionally contains the steps “process mapping” and “process 
control” and their challenges. These two steps are crucial to enable a successful and goal-oriented application 
of ML in interaction with manufacturing processes.

The approach for the improvement of energy efficiency with details of the 5-steps is shown in Figure 3. 
The topics mentioned in this figure will be presented in the following subsections. In each step, the respective 
technical challenges during realisation are shown in the tabular format. Knowing challenges and solutions 
provides a guideline for data science engineers to derive knowledge from data, adjust the process settings, and 
help manufacturers to better control the process steps during the creation of a product.

4.1. Step 1: process mapping

Current processes of manufacturing can be highly complex. Process mapping is of great importance to reach 
the maximum possible reduction in energy costs and increase the overall sustainability. As Figure 3 shows, in 
the process mapping phase, analysis of the current conditions and settings of established processes, objectives 

Figure 3. Overview of 5-steps approach for increasing energy efficiency in manufacturing industries.
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Firstly, process and product quality requirements and the effect of these requirements on energy consumption 
can be partly identified through interviews with experts and manufacturing employees. However, technical 
challenges such as the lack of an ordinary working language can make the current understanding situation 
difficult. In some cases, complex interrelations in the production settings make it even more difficult to 
understand the situation.

Secondly, identification of the essential processes, which consume energy is a necessary aspect of energy 
optimisation. This aspect influences a productive and effective model development for reaching energy efficiency. 
Value stream analysis can be used as a tool for this aim (Darwish et al., 2010). Next, illustration of energy 
streams through process flow diagrams can help to document and quantify the energy flows. However, practical 
applications showed the authors that energy values are often not available at all. Even when data are collected 
regarding energy consumption, the values are not available at the detailed level for each individual energy process.

For determining the energy usage, the energy consumption can be calculated per unit of end product at 
the specified manufacturing process. Considering this approach, it can also handle shared production steps 
that share their capacity to different lines. For each product or product quantity, the energy consumption for 
each production step is calculated or measured. After completing the identification of high-energy-consuming 
processes, energy flows and the amounts of energy, there is a need to dynamically feed the complexities of the 
process to the next steps. This paper suggests the open-source framework Swagger (Swagger, 2020), see Table 1. 
This connector can link and document the flow of information between process mapping, data integration 
and data modelling. Also, HTTP web services (Roy & Ramanujan, 2001) can be designed for this aim. The data 
structures, which are documented from step “process mapping” can be transferred to “data integration” and 
“data modelling” using Swagger as an interface description language.

concerning energy efficiency, system boundaries and detailed analysis of current energy consumption as well 
as identification of higher energy consumers in a manufacturing plant are investigated. In the case of process 
boundaries, both individual machines or individual process sections and, in some cases, entire production 
processes are considered. The selection of process boundary is dependent on the scope of use cases. Energy 
efficiency improvement by maintenance, changing the parts or changing the production planning is out of 
the scope of this paper. For increasing energy efficiency and keeping quality at the same level, developing an 
understanding of the established manufacturing system, connections of the process settings to the quality of 
product, requirements on product quality (customer side) and opportunities for improving the process quality 
concerning energy, need to be further detailed and documented. For example, changing specific process 
parameters of a manufacturing process lead to an increase in energy efficiency, but this increase in parallel 
causes a decrease in product quality. The knowledge about relevant parameters, criteria in product quality and 
other standards have to be investigated in the process mapping phase by communication with process experts. 
The next step, data integration, can be started on this basis, and several improvements can be archived via 
different approaches like parameter optimisation and energy transparency techniques.

Table 1 shows significant mapping aspects of manufacturing processes for energy efficiency. Along with 
these aspects, technical challenges are presented.

Table 1. Aspects and challenges of process mapping for increasing energy efficiency.

Aspect Method-application Technical challenge

Analysis of current processes regarding EE Experts interview Complex production setting, asking the right questions, working 
language, different viewpoints on the same problems

Identify higher consumers Value-stream analysis Processes or machines which consume the most energy

Illustration of material and energy flows in 
machinery, manufacturing equipment and plant

Process flow diagram 
(flowsheet)

Recognise all essential aspects, collection of energy consumption 
from different processes or machinery, which are not aggregated 
(combined) not available. Energy measurements should first be 
collected, and later combined together.

Need for a software framework that builds the 
connection between process mapping, data 
integration and modelling

Swagger Collection of all required data sources, early recognition of data 
structure, need for having an overview and shortcut to remember 
complexities of the process during ML model development.
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4.2.1. Data quality

Having data with superior quality plays an unneglectable role in getting appropriate results from ML models. 
Firstly, there are standards, such as ISO/IEC 25012:2008 (International Organization for Standardization, 2008) 
and ISO 8000-63 (International Organization for Standardization, 2019), which provide comprehensive guidelines 
for the characteristics of data in databases and data integration.

In manufacturing processes, controlling the quality of recorded data from sensors in a database is a 
significant task. The required information can be not recorded into the database during data collection. In 
the following, some of the disorders, which can happen in the databases or the related data collection devices 
are mentioned. In the case of a sensor failure, the sensors may send erroneous data or even no data back to 
the databases. Similarly, a defect in information transmission compliance, such as Wi-Fi or the respecting 
battery can cause a disturbance in feeding data in ML models. For example, in case a temperature sensor is 
not sending data, and the temperature data are fed automatically to a prediction model, this stoppage of 
recording information from the sensor won’t be detected unless a specific mechanism is designed to detect 
this disorder in information transmission. Another case is the unexpected shut down of servers, which can 
cause an interruption in saving correct data to the database. Therefore, mechanisms such as outlier detection 
are needed to consistently check the quality of data (Table 2). As an example of a solution regarding outlier 
detection, see Scikit Learn (2007).

4.3. Step 3: modelling with machine learning

Machine learning algorithms can lead to pattern derivation from existing datasets without being explicitly 
programmed (Monostori, 2003). These patterns and respective information can support manufacturers in 

4.2. Step 2: data integration

If the underlying process is sufficiently well understood, it can often be observed that a large amount of 
data needs to be recorded to describe it completely. Data integration aims to ensure that all process-relevant 
data is recorded, pre-processed, and provided with the appropriate frequency and quality.

Energy-related data in a manufacturing process can be electricity, water vapour or fossil fuel consumption. 
Other data that affect manufacturing energy consumption are properties of machinery and processes, such as, 
motor performance and machine utilisation rate. Besides, data that affect the quality of input material and 
an end product can contribute to the rate of energy consumption. Moreover, the manufacturing process and 
external influences, such as raw material variations, affect energy consumption. For collecting this energy-related 
data from manufacturing, sensors and flow meters can be used (Table 2).

As stated in this Table, determining the number of sensors installed on the machinery and finding the 
suitable data collection method from manufacturing processes are among the technical challenges that should 
be addressed during data collection for EEM. Moreover, sensor fusion should be determined, e.g. how to integrate 
sensors in machinery or processes and where to locate them.

Apart from the selection of a type of data repository (e.g., relational database, energy cloud system (Schaefer et al., 
2021), there are some tasks, which belong to the integration phase. See Table 2 for more information.

Using experts with domain knowledge in manufacturing can support tremendously in deciding on energy-
related problems and required data features.

Table 2. Aspects and technical challenges of data integration.

Aspect Method-application Technical challenge

Collect energy data from machinery and process Sensors, flow meters, NIR devices How many sensors, costs, sensor fusion problems

Automatic exchange of data from shop floor to 
database

Exchange technologies Need for selection of right tool, standard interfaces, 
data fetching intervals and size

Store business and energy-related data Databases, cloud storage Incompatible data formats, need for controlling data 
quality, difficulty of recalling data to local computers

Select representative data views Data tables Need for domain knowledge, expert interview, 
energy-related problems, and their scope

Data quality monitoring Outlier detection in the databases Dirty data

Communication between devices Machine-to-machine communication 
protocols, reading data from devices

Server shutdowns, difficulty of automatic data 
extraction
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4.3.1. General data-driven machine learning modelling for manufacturing

There are no models based on physical principles for many interrelationships in manufacturing plants, 
but an extensive database is available in many cases. For these models, a uniform approach to model the 
product behaviour in the underlying manufacturing process is presented in Figure 4. This model is one of the 
contributions of this paper.

Figure 4 views a manufacturing process from a data-driven perspective, which covers product and process 
information. The influences are categorised into different input and output groups. The goal of this data-driven 
modelling approach is the possible application of ML methods, and their use the increased energy efficiency. 
The input on the left side of Figure 4 is divided into controllable and uncontrollable parameters. Parameters are 
seen as variables in this data-driven model. All variables that can be actively changed during the processing of a 
product are called controllable variables. The variables, which cannot be actively influenced but are measurable 
and are used as information sources within the model, are called uncontrollable variables. This representation 
is based on an approach from statistical experimental design (Kleppmann, 2016).

decision-making, to better understand manufacturing processes, and to have higher transparency of energy 
consumption in processes. Therefore, the step of modelling and in particular, the selection of an ML model as 
well as input variables are important. The core feature is that ML models learn from past data to generalise 
into the future. In this paper, ML models consider the best set of controllable process variables for less energy 
consumption while the quality of the produced product is maintained at the expected level. For this, Figure 4 
presents a data-driven modelling approach based on product and process data.

Above all, the volume, variety and velocity of data collections pose a big challenge in the modelling and, 
therefore in the selection of an ML-model (Sen et al., 2016). There is thus a close link between the step “Data 
integration” and the step “Modelling”. Usually, one realises data problems while modelling or gets ideas when 
collecting new data. For the presented modelling approach in Figure 4, variables related to the features of the 
process and product are selected. This can be done automatically or semi-automatically under the guidance 
of an expert (Goodfellow et al., 2016). Choosing features of a product, such as an edge, and rejecting its 
colour is a kind of feature selection. Identifying and removing irrelevant and redundant features reduce the 
dimensionality of data and enable ML to operate faster and more effectively (Yu & Liu, 2004). Such exemplary 
sensor signals of a particular product type, whose main characteristics (features of the product type) will be 
kept whilst unnecessary correlations are discarded.

Figure 4. General data-driven modelling approach for manufacturing processes.
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4.4. Step 4: optimisation

If an accurate machine-learned model has been trained, optimisation can be used to map a manufacturing 
behaviour for the output variables. To realise the effect of input variables (controllable and uncontrollable, see 
Figure 4) on the behaviour of the manufacturing process, the controllable variables need to be changed. In what 
way these change needs to be performed shall be determined within the optimisation step. First, one must decide, 
which set of controllable variables shall be actively changed in which ranges. Second, the optimisation goal 
needs to be defined. This goal can be constructed in any way from the output variables of the model (Figure 4).

The optimisation goal needs to be expressed in a single optimisation rating. Following the optimiser’s 
strategy to achieve a maximum/minimum optimisation rating, the chosen set of controllable process variables 
is changed. At the end of the optimisation step, the output is the best set of controllable variables. This set can 
be used as a proposal for more energy-efficient manufacturing.

A major technical challenge in optimisation is that most machine learning methods have the disadvantage that 
they are black-box models. Only the input and output of the model are visible. The way to calculate the output 
can hardly be represented transparently and is rarely mathematically described in the form conventional optimisers 
can handle. For this reason, optimisation procedures that can process black-box models are necessary. Evolutionary 
algorithms can be used as an example of this. Table 4 shows optimisation algorithms that can be used in this step.

4.5. Step 5: process control

Process control aims to integrate the gained insights from ML models within the process. In this paper, the 
applicability and benefits of this new knowledge underline the improvement of energy efficiency in manufacturing. 

For the use of this generalised modelling approach in presenting the process behaviour to reduce the energy 
consumption while conserving the quality of the product, both product quality and process quality need to be 
part of the output variables of the model. In this way, the influence of the input variables on the outputs can be 
learned based on manufacturing data. All relevant information that affects the outputs must be covered within 
the input variables (controllable or uncontrollable). Otherwise, it won’t be possible to train an accurate model. 
The model’s performance is a key factor of this approach and the following steps of the proposed framework. 
If the model performance is insufficient, the next steps like optimisation or process control cannot positively 
affect the energy efficiency of the manufacturing process.

The model of the manufacturing process (as shown in the middle of Figure 4) can be a pure prediction 
model as well as a basis for an optimisation process. As a result of an optimisation, more favourable settings 
for the control variables can be proposed. However, this requires measures to be defined based on the output 
values, e.g. a cost function for the optimisation process.

Further, selecting an accurate ML algorithm for a given problem is not simple. Numerous methods of ML 
have been suggested for the creation of classification models. Yet, there is no clear picture of which method 
is the best for which task in manufacturing (Vilalta & Drissi, 2002). One possible approach is estimating the 
accuracy of the ML candidates’ algorithms and selecting the one that seems to be most accurate. Moreover, 
experiences gained during projects about the use of ML algorithms for EEM show that, in general, all machine 
learning methods that can model regression problems are used to model the product behaviour within the 
manufacturing process (Alvela Nieto et al., 2019).

Practical experiences and characteristics of the selection of ML algorithms as a result of a series of implementations 
and their deployment in accurate manufacturing for achieving efficient processes in terms of energy have been 
summarised in (Alvela Nieto et al., 2019). Table 3 shows the applied ML algorithms in real manufacturing 
environments that have been selected for modelling the product behaviour in a particular process (Figure 4).

Table 3. Aspects and challenges of data modelling.

Aspect ML algorithm Technical challenge

Product or process features Support Vector Machine (classification) Parameter settings, labelled data

Product or process features K-Means (clustering)
Data dimensionality, parameter settings, 
unlabelled data

Continuous or class-like outputs Neural Networks (regression or classification)
Relevant features, overfitting, multiple outputs, 
labelled data

Continuous outputs Support Vector Regression (Regression) Relevant features, overfitting, labelled data
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This may mean a formal integration, such as a model forecasting that is then read and visualised. Alternatively, 
this may be using the gained knowledge to elicit changes in the organisation. On the one hand, the new 
insights as recommendations can be presented to employees and managers through assistant systems to better 
select process settings in the form of visualisations. Hence, this can support decision-makers in operational 
processes and reduce energy consumption. On the other hand, discovering patterns in the data indicating, i.e., 
new behaviour in energy consumption, may not be formally integrated into the assistant system. Still, it will be 
helpful in visualisation for planning and decision-making at the management level.

4.5.1. Employee integration by providing assistant systems

Visualising the findings made during the application of ML in manufacturing processes can give the operator 
additional information about good or bad production patterns for production outputs, such as product quality 
or energy consumption. The operator then has to learn by itself the relationships and adapts process parameters 
differently. In other cases, energy-efficient parameter patterns suggested in optimisation have to be adjusted 
directly into the process control.

A different way would be to propose a process pattern, which has to get accepted by an operator. This has the 
advantage that the operator does not need to extract optimal process parameters for every situation (dependent 
on weather, material and so on) on his own. The optimal solution is created based on the machine-learned model 
during the phase of optimisation. But the operator still has the chance to prevent misleading process behaviour 
in case of wrong patterns. This increases the safety of the process in comparison to direct feedback to the process 
control. Technical solutions for the communication between machine-learning framework and process control 
can be OPC (OPC Foundation, 2020) and REST interfaces (Daigneau, 2012). Employee integration by providing 
assistant systems is a better way to try out the correctness of the process patterns proposed by this 5-step approach.

Including the operator’s skills and conditions in the assistant systems can also improve the performance of 
this system for energy monitoring and optimisation. The interested reader can get more insights by referring 
to (Botelho et al., 2014).

5. Application scenario

A scenario for applying the 5-step approach is a process step from animal feed production. For this purpose, 
an energy-intensive process step is described, which ensures the grinding of grain into flour in a so-called 
hammer mill. A hammer mill is a machine, which shreds the grain in the plant.

Step 1: Process mapping. In step 1, with the help of the tools presented (see Table 1), the specifications of the 
process and improvement areas are identified. During the process of shredding grains with the hammer mill, the 
granularity of the output flour is important for usability and, ultimately, animal health. Therefore, the granularity 
of flour is a key product quality characteristic. Next, parameters (variables) that influence this process and 
boundary conditions for this manufacturing process are identified. A brief selection of parameters is shown in 
Figure 5. The findings after analysis of the process and interview with the experts at the factory show that one 
of the most important parameters of the hammer mill is the rotor speed. If its value becomes higher, the crushing 
degree of gains (product quality) increases, while the electrical energy consumption increases as well. Therefore, 
this 5-steps approach should aim to decrease energy consumption depending on the quality and nature of the 
grain speed (disturbance variables), at the same time preserving the flour quality by suggesting optimal settings 
for the rotation speed of the mill (process parameters). See subsection 4.3.1 and Figure 4 for more information 
about defining the general data-driven modelling.

Step 2 Data integration. In the data integration step as described in section 4.2, the necessary database for describing 
the process was recorded using the approaches of the framework (see Table 2).

Table 4. Optimisation for energy efficiency.

Aspect Method-Task Technical challenge

Optimise process variables Evolutionary algorithms Not visible (black-box), the range of variable combinations needs to be noted, unknown 
variable combinations

Grid search Same as evolutionary algorithms, additionally computation time growth with high-
dimensional optimisation variable grids
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Step 3 Modelling. With a neural network, the model context was modelled based on data for the identified output 
variables. More information about ML modelling was given in section 4.3.

Step 4 Optimisation. In combination with the model, an evolutionary optimisation algorithm was created that 
optimally fulfils the optimisation goal (see section 4.4) identified in step 1 about energy efficiency and product 
quality. The result of this step is the suggestion of an efficient rotation speed at the hammer mill.

Step 5 Process control. As described in the framework (see section 4.5), the suggestion for the speed from step 4 
can be made available visually for the employee or transferred directly to the process control via a REST interface.

By carrying out the 5-steps according to the procedure presented, the defined goal for the process of 
shredding can be carried out more energy-efficiently with producing the same flour quality. Structuring the 
necessary work in these 5-steps means that the activities are easier to understand for the company and can be 
carried out more quickly. The actions made are visually presented in Figure 5.

6. Discussion

In the first part of this section, the paper provides an evaluation of the 5-steps framework, and in the second 
part, a discussion on the generalisability of this 5-steps approach is provided.

6.1. To what extent can overcoming the technical challenges of ML contribute to reducing the 
problems of manufacturing for improving energy efficiency?

For a better evaluation and clearance of the mentioned 5-steps approach, the challenges to EEM are summarised 
in Table 5, and the 5-step approach identifies opportunities to overcome them. Table 5 covers the challenges 
of manufacturers, which were previously mentioned in the introduction (section 1). The potential solutions to 
these challenges are originated from the 5-steps framework (section 4) and shown in the column “Suggestions”.

Figure 5. Overview of use-case in feed production.
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Based on the results in Table 5, if the challenge of “lack of transparency of energy use in a manufacturing” 
is observed, identifying processes or machinery, which have high energy consumption, using proper energy 
measurement devices, using interfaces (e.g. Swagger) for linking collected data in a structured form, providing 
visualisations of energy flow for machinery and processes are needed to overcome this challenge. For more 
suggestions, please see Table 1 and Table 2.

The challenge “Need for structured product and process-related data” has been addressed in steps 1 and 2. 
Structuring the knowledge of processes through interviews with the experienced employee, embedding sensors 
and flow meters on the machinery, database systems, and data quality control are the suggested methods for 
structuring product and process data.

For “increasing the reliability of employee to the robustness of sensor values or automated measurement 
systems”, the 5-steps can allow the manufacturer to optimise the settings of machine or process parameters to 
reduce energy consumption. Further, employees can learn the variations in the process parameters better after 
they use the suggestions on process parameters from ML systems. By optimising processes via machine learning 
(for improving energy efficiency), they may need methodological expertise in data science, ML, IT competencies 
for data collection, provision and return, and well-defined use-cases. These requirements are addressed in this 
paper’s concept, section 4, for improving energy efficiency within 5-steps.

Finally, the challenge “Adapt to future digitalisation and automating manufacturing process” is realised 
through the deployment of machine learning models in the manufacturing process and supporting the employee 
with assistant systems. This approach can suggest the best combination of process parameters, which optimises 
the energy consumption and at the same time keeps the quality of the end product unchanged (see Figure 4, 
section 4.5).

6.2. Generalisation of findings to other manufacturing

The presented 5-step guideline is already tested on processes in research projects (Alvela Nieto et al., 2019). 
The results showed that there is a difference in the level of maturity within 5-steps. Some of the steps are newly 
developed and should be tested more (e.g., ML modelling view). Some are well defined and generalisable to other 
processes (e.g., swagger). Representation of variable to controllable and uncontrollable, and decision on these 
groupings should also be tested more in future. There is still no magical ML algorithm that solves all problems 

Table 5. Challenges and opportunities to energy efficiency in manufacturing processes.

No. Challenges Suggestions

1 Lack of transparency of energy use Identification of value-adding and non-value-adding processes, 
illustration of material and energy flows, identifying higher energy 
consumers (step 1 - “Process mapping”)

Using data tools and interfaces for measuring energy, collect data in 
a structured form (step 2 - “Data integration”)

Identifying variables of process and product that affect energy 
consumption through a data-driven modelling view (step 3 - 
“Modelling”)

Visualisation of energy-saving opportunities for key energy drivers 
and process settings (step 5 - “Process control”)

2 Need for structured product and process-related data Data collection through sensors, flow meters, camera devices, using 
data technologies such as database, swagger for data storage and 
linkage between them (step 2 - “Data integration”)

Automatic data transfer and exchange through protocols, data 
quality monitoring (step 2 - “Data integration”)

Structuring employee’s knowledge about the product quality 
process configurations through interviews, Swagger (step 1 - 
“Process mapping”)

3 Lack of reliability of employees to the robustness of sensor values or 
automated measurement systems

System for monitoring the accuracy of measurements (step 5 - 
“Process control”)

4 Adapt to future digitalisation and automating manufacturing 
process

Assistant systems (step 5 - “Process control”)

Continuous learning (update) of deployed models (step 3 - 
“Modelling”, step 4 - “Optimisation”, step 5 - “Process control”)
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of manufacturing processes. The selection of algorithms is very case-specific and depends on the availability of 
data and the technology used for each situation.

The use cases of the 5-step guideline were based on SME manufacturing. Thus, the generalisability to other 
SMEs processes or other manufacturing branches should be considered in future research.

7. Conclusion

This paper presents a 5-step approach for using data from manufacturing environments with ML algorithms 
to improve the energy efficiency of processes. The 5-steps are explained and the deployment of energy measures 
through ML is discussed by presenting challenges. Essential aspects for reaching EEM were mentioned and 
solutions were suggested. This research gives an overview of reaching energy efficiency in manufacturing and 
how the application of machine learning help in quantifying energy efficiency challenges. Additionally, the 
application of the 5-steps approach is implemented in a process step. Future work for completing the 5-steps 
to make them even more beneficial in manufacturing can be, to research the topic of explainable ML models 
and continuous learning, as well as providing the employee and management with a better interaction with the 
machine learning models through a straightforward explanation of changes in the processes and their effects 
on the quality of the product.
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