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1. Introduction

The ongoing challenge of addressing the continued growth of emissions and their associated environmental 
impacts, such as global warming, underscores the critical importance of considering both cases: improving 
energy efficiency in the production chain. This is crucial because of its economic, technical, environmental and 
social implications. By reducing the cost of energy consumption, significant savings can be made and economic 
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competitiveness improved, while at the same time mitigating climate change and improving energy security. 
Various approaches are being used to address this challenge, from the development of more efficient technologies 
to the adoption of government policies, public education and ongoing research into novel solutions. Improving 
energy efficiency is essential to ensure a sustainable and secure future for future generations.

The current focus is therefore on two cases of energy efficiency management, covering both the supply 
and the demand side. Supply Side Management (SSM) strategies involve optimising energy production and 
distribution to meet demand efficiently and sustainably. On the other hand, Demand Side Management (DSM) 
strategies aim at changing consumption patterns at different levels of use, minimising the use of appliances and 
optimising their operation. DSM includes strategies such as time-of-use pricing, demand response programmes, 
energy efficiency initiatives and load management technologies that influence consumer electricity use patterns, 
optimise energy consumption, reduce peak demand and improve grid reliability and efficiency. These strategies 
focus on improving the performance and reliability of energy generation sources, upgrading transmission and 
distribution infrastructure, promoting the use of renewable energy and integrating advanced technologies for grid 
optimisation and flexibility. The aim of both supply and demand management is to ensure a reliable, affordable 
and environmentally sustainable energy supply to meet current and future needs. In the context of Industry 4.0, 
optimisation refers to the process of improving and maximising the performance, productivity and efficiency of 
both supply and demand management strategies. This holistic approach aims to leverage technological advances 
and data-driven insights (subject to uncertainty) to improve energy management practices (Camargo, 2023; 
Rodríguez et al., 2023; Causil & Morais, 2023).

In this context, where energy efficiency technologies and technical, economic and environmental optimisation 
play a crucial role, there is a close relationship with carbon pricing, which acts as a Pigouvian tax mechanism 
to address the positive (positive effects) and negative (negative effects) externalities associated with property 
rights in 2CO  emissions. Carbon pricing provides economic incentives or penalties (depending on the externality 
produced) for companies to adopt cleaner and more energy-efficient technologies and practices, thereby 
stimulating investment in innovation and enhancing long-term competitiveness, while contributing to climate 
change mitigation and promoting a more sustainable economy. They are determined by the laws of supply 
and demand, based on the trading of property rights, and depend on the caps, floors and tiers of the sectors 
involved. In the current state of the art, these data are often obtained through statistical analysis (subject to 
uncertainty) and complex mathematical modelling in operations research (see Table 1). Uncertainty refers to 
the lack of knowledge about the impact of one action on another, and this can be none (deterministic models), 
partial (probabilistic or stochastic models) and complete or fundamental (fuzzy models). In the context of the 
economic evaluation of Pigouvian carbon taxes, the type of uncertainty plays an important role in understanding 
the carbon price, as it affects the tools that can be applied and the results obtained (see Table 1). This is even 
more critical when studying variables that are not linked to a market governed by the laws of supply and demand, 
i.e. non-monetary indices (Fuentes-Morales et al., 2020; Hassan, 2021; Wu et al., 2022; Camargo, 2019, 2021, 
2022a, b, 2023; Rodríguez et al., 2023; Causil & Morais, 2023).

Table 1 provides a summary of current proposals for economic evaluations with carbon pricing and 2  CO  
emissions, including: country, uncertainty, modelling, indices studied and comments. They approach the solution 
of single-objective and multi-objective problems by applying the techniques available in the state of the art with 
difficulty (problems of metric compatibility between indices). This implies the use of subjective linear weights 
that balance the units in the construction of the objective function to be optimised and, in turn, weight these 
indices, leading to solutions that may be suboptimal. In addition, these proposals represent complex methods 
that require large amounts of data with uncertainty (none, partial and fundamental) and the use of Artificial 
Intelligence (AI) with supervised learning (machine learning), and most of them do not take into account the 
presence of fundamental uncertainty, but only partial uncertainty.

Artificial intelligence for problem solving and optimisation refers to a set of techniques designed to find 
effective and efficient solutions to complex problems across multiple disciplines. AI ranges from heuristic 
algorithms, which explore promising solutions without guaranteeing optimality, to algorithmic search techniques, 
which aim to find optimal or suboptimal solutions within a defined search space. In addition, AI includes 
diverse approaches such as heuristic search, informed search, machine learning (e.g. neural networks), and 
metaheuristic optimisation (particle swarm optimisation), which are applied in areas such as planning, logistics, 
system optimisation, and economics to solve hard problems and improve decision making. Other papers present 
techniques such as computable general equilibrium models, which use real economic data to estimate how an 
economy might respond to changes in policy, technology or other external factors that are subject to uncertainty 
(Camargo et al., 2019; Camargo, 2019, 2021, 2022a, b, 2023; Causil & Morais, 2023).
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In this context, Fuzzy Decision Making (FDM) theory, within the field of Artificial Intelligence, integrates 
human reasoning characteristics by subjectively evaluating and prioritising different criteria in decision making 
under fundamental uncertainty (Saaty, 2003; Camargo, 2019, 2021, 2022a, b, 2023; Liu et al., 2020). It extends 
classical decision theory to deal with uncertainty and imprecision in decision processes, using fuzzy logic to model 
fundamental uncertainty through fuzzy sets and membership (fuzzy preference) functions. This allows decisions 
to be made in situations where conditions and outcomes are not entirely clear or unambiguous. Fuzzy models 
incorporate human reasoning and perception, allowing the range of variables or functions under consideration to 
be adjusted to reflect the degree of acceptance of a variable in a given set. Exponential weights (EW) correspond 
to the preferences and hierarchical criteria of the decision maker. The solution should be the most satisfactory 
in terms of the decision maker’s exponential weights and the accepted limits (upper and lower limits).

Optimisation methods are commonly classified according to their approach to solving, distinguishing between 
heuristic methods, which rely on rules of thumb or simplified search strategies, and algorithmic methods, 
which use precise algorithms to find optimal or suboptimal solutions. Another criterion is the type of search: 
uninformed search explores the search space without knowledge of the goal, while informed search uses goal-
related information to guide the search towards more promising solutions. Optimisation methods can also be 
categorised by solution paradigm, distinguishing between knowledge-based methods that use predefined rules 
and relationships, data-driven methods that learn from data sets to make decisions, and optimisation-based 
methods that search for the best solution among a set of alternatives. At the intersection of AI and computational 
optimisation, Particle Swarm Optimisation (PSO), a metaheuristic inspired by collective dynamics in nature, has 
emerged as a powerful tool for finding optimal or near-optimal solutions to various optimisation problems. 
PSO involves both random and intelligent search by simulating social interactions between different possible 
solutions (particles). Each particle adjusts its position based on the best solution it has found and the best solution 
seen by the swarm, thus mimicking biological behaviour and using bio-inspired algorithms (Camargo et al., 
2018; Camargo, 2019, 2021, 2022a, b, 2023).

In summary, the following challenges are highlighted and are still under discussion in the state-of-the-art 
(Camargo  et  al., 2018; Camargo, 2019, 2021, 2022b, 2023). The challenges of multidisciplinary or multi-
objective optimisation when there is fundamental uncertainty; 2) The complexity of mathematical modelling 

Table 1. Search results in the Scopus database (conducted in May 2023).

Country Uncertainty Modelling Indices Comment

Kang et al. (2023) Global None/Partial Life Cycle Analysis Carbon price and 2CO  
emissions

Life Cycle Analysis from 
statistical records

Huang et al. (2023) China None/Partial Computable general 
equilibrium models

Energy efficiency 
improvement

Analysis from statistical 
records

Wei & Aaheim (2023) Global None/Partial Computable general 
equilibrium models

Carbon tax and demand 
side management

Analysis from statistical 
records

Yeo & Oh (2023) Global None/Partial Computable general 
equilibrium models

2CO  emissions Computable general 
equilibrium

Guang et al. (2023). China Partial Demand side 
management of carbon 

emissions

Carbon price and 2CO  
emissions

Analysis from statistical 
records

Sirin et al. (2023) Global None/Partial Market failure or politics? Carbon price and 2CO  
emissions

Regulatory actions

Al Shammre et al. (2023) OECD Countries Partial Analysis from statistical 
records

2CO  emissions and 
taxes

Analysis from statistical 
records

Yang et al. (2023) China Fundamental Machine learning 2CO  emissions Prediction from statistical 
records

Alizamir et al. (2023) Iraq Fundamental Machine learning Prediction by 
meteorological data

Machine learning

Hu & Cheng (2023) China Partial Statistical Prediction Carbon price and 2CO  
emissions

Optimal prediction from 
statistical records

Wang et al. (20232a) Global None/Partial Multi‐objective strategy 
and optimisation

Carbon price and 2CO  
emissions

Optimal prediction from 
statistical records

Wang et al. (2023b) Global None/Partial Multi-objective strategy Carbon price and 2CO  
emissions

Data and Statistical 
Analyses

Liu & Ying (2023) China Fundamental Multi‐objective model Carbon price and 2CO  
emissions

Data Analysis

Rudnik et al. (2023) EU None/Partial Supply side management 
with carbon price

Carbon price and 2CO  
emissions

Prediction from statistical 
records

Source: The Authors.
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due to the previous point, especially in terms of metric compatibility and their hierarchical evaluation. If one 
of the indices corresponds to an economic value and the other is a non-economic technical index, this implies 
an economic evaluation of this non-monetisable index, which may be unknown and not easy to obtain; 3) 
Due to the previous points, there is an inefficiency in determining the economic valuation (price of 2CO  and 
externality), especially when there are indices that cannot be monetised or are not subject to the laws of supply 
and demand on the markets; 4) Inadequate consideration of fundamental uncertainties in the current state of 
the art due to the difficulty or lack of consensus in the economic valuation of non-monetisable indices of the 
corresponding externality (positive or negative); 5) The best use of the aforementioned artificial intelligence 
tools to obtain and evaluate optimal solutions in this context.

Based on the above five state-of-the-art problems, this paper develops, analyses, generalises and validates 
a novel methodology to determine the optimal economic valuation of emissions (carbon price) within the 
Argentine production chain. It integrates fundamental uncertainty (Fuzzy Decision Making) and hierarchical 
variation (Analytic Hierarchy Process) with the optimisation of Supply Side Management (SSM) and Demand 
Side Management (DSM) through Life Cycle Assessment (LCA). Using Particle Swarm Optimisation (PSO), this 
approach provides a unique means of improving the efficiency (fuzzy intersection) of the Argentine production 
chain. This flexible methodology incorporates metaheuristics and hierarchisation for bi-objective (investment cost 
and emissions) optimisation under fundamental uncertainty, with the aim of optimising, evaluating, analysing 
and validating the results, taking into account the fuzzy preferences and priorities of the decision-makers (Offer 
Side and Demand Side Management Optimisation).

In this way, the methodology develops, generalises and analyses an index that belongs to the current research 
on the economic valuation of non-monetary attributes, known as the intrinsic cost index (Camargo et al., 2018; 
Camargo, 2023). In this work it is extended to cover different types of fuzzy intersection t-norms (with a coefficient p) 
and Exponential Weights (EW), and an additional term is added that allows modelling the resulting sign and thus 
determining the type of externality, taking into account positive and negative externalities. It provides an economic 
assessment of the emissions externality of the Offer Side Management (OSM) and Demand Side Management (DSM) 
optimisation. From this study, the efficiency frontiers of these cases are obtained (similar to the supply and demand 
model) and from there a new market equilibrium or computable general equilibrium model is presented as a result 
of this methodology. Then the theoretical, practical and economic contributions the present methodology of this 
paper are elaborated, analysed, generalised and validated in the following sections, together with an assessment 
to ensure coherence, realism and consistency with existing economic theories of market equilibrium.

This work is structured as follows. Section 2. summarises the material and methods: The Fuzzy Decision 
Making Theory and Analytic Hierarchy Process (Section 2.1.), Particle Swarm Optimisation (Section 2.2.), Life 
Cycle Analysis with Demand Supply and Demand Side Management (Section 2.3.) and Computable General 
Equilibrium Model (Section 2.4.). Section 3 develops the optimal economic evaluation of the Argentinean 
production chain with contributions and results: proposed novel methodology to obtain the optimal economic 
value of emissions with uncertainty (Section 3.1.), Theoretical and practical contributions of the proposed 
methodology (Section 3.2.), Practical contributions of the proposed methodology with the comparison of the 
two cases related to Supply and Demand Side Management (Section 3.3.) and Economic Contributions of the 
proposed methodology (Section 3.4.). Section 3.4. develops the Generic Camargo Intrinsic Cost (see Section 
3.4.1. and Section 3.4.2.). Finally, Section 4 presents the conclusions of this work.

2. Materials and methods

2.1. Fuzzy decision making theory and analytic hierarchy process

Fuzzy decision theory (Figure 1 and Equation 1) is based on human behaviour to make decisions (decision 
maker) based on a criterion of exponential weights and evaluation under uncertainty (fuzzy function). 
An acceptance (fuzzy) function is used to transform a set of indices to the fuzzy domain (Saaty, 2003; Liu et al., 
2020; Camargo 2023). In Equation 1, the mEW  are Exponential Weights (that are obtained for each index or 
attribute m) whose effect is to expand ( 1mEW < ) and contract ( 1mEW > ) the fuzzy preference function. If it is 
desired to increase the index, the function has a positive slope (and vice versa). The index of the preference 
function mµ  (Equation 1) is associated with the degree of acceptance of the evaluated attribute or index by the 
decision maker (economic costs and 2CO  emissions), according to his or her established exponential weights or 
EW. For each objective (or constraint) function calculated (emissions and investment cost), the fuzzy functions 
(Equation 1) associated with its objective or constraint are defined as follows: consider an upper and a lower 
bound in the possible values of the variable corresponding to a given objective or constraint m, mU . These 
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indices are related by the fuzzy intersection (product) operation of the preference functions mµ  and since these 
are dimensionless, there is no metric compatibility problem.
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Within the theory of fuzzy decision making, the fuzzy product type intersection is used to model human 
reasoning in situations where relationships between variables are not precise or subject to uncertainty, and it 
allows to represent how different variables influence each other in a gradual and not necessarily binary way. 
From a human reasoning perspective, the fuzzy product type intersection reflects the ability of society (supply 
and demand management) to consider multiple factors and evaluate how they interact to make decisions. 
The fuzzy intersection or t-norm product tp (see Equation 2, Equation 5 and Equation 8) is the most common 
confluence (fuzzy operator) and this makes it possible to model how individual exponential weights, objectives, 
constraints and other factors combine in an incremental way to influence the final outcome (investment cost and 
emissions). This more accurately reflects how people weigh (exponential weights) and balance (fuzzy intersection) 
different considerations when making real-life decisions (Fuzzy Decision Making). Fuzzy intersections include 
the Einstein product, the algebraic product and the family of t-norms Hamacher’s product, which depend on 
a factor  .p  These t-norms are further developed in Section 3.2.1.

2.2. Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) is a bio-inspired optimisation algorithm based on the social and foraging 
behaviour of swarms of animals, such as birds or fish. From an artificial intelligence point of view, PSO is inspired 
by observing how members of a swarm cooperate and communicate with each other to find the best possible 
solution to a problem. In PSO, each “particle” represents a possible solution to the optimisation problem, and the 
swarm of particles moves through the search space to find the optimal solution (in this work, it is the t-norm). 
In this work, as presented in Section 3, the particle corresponds to the optimal allocation of resources in demand 
and supply management according to the life cycle analysis performed. Each particle adjusts its position based on 
its own experience (personal best position) and the collective experience of the swarm (global best position). This 
process is repeated iteratively until a predefined stopping condition or iteration limit is reached. From a performance 
point of view, PSO is a metaheuristic algorithm that is not guaranteed to find the globally optimal solution, but is 
highly efficient at finding near-optimal solutions to problems with high dimensionality or multiple local optima.

Figure 1. Preference function: (a) Decrease of mU  and (b) Growth of mU .
Source: The authors.
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As the particles move through the search space (the set of possible solutions to the problem), the PSO uses 
the information exchanged between them to guide the search towards promising regions (and best solutions). 
In summary, from an AI perspective, PSO is a nature-inspired optimisation technique that exploits swarm behaviour 
to find optimal solutions in complex search spaces. Its operation is based on cooperation and communication 
between swarm particles, making it an effective approach to solving a wide range of optimisation problems. 
Due to space limitations, the Particle Swarm Optimisation metaheuristic is not developed in depth in this paper, 
but can be found in the following references (Casanova et al., 2018; Camargo et al., 2019; Camargo, 2019, 
2021, 2022a, b, 2023).

2.3. Life Cycle Analysis, Demand Supply Management and Offer Supply Management

Life Cycle Assessment (LCA) is a tool used to evaluate the environmental impact of a product or service 
throughout its life cycle, from the extraction of raw materials to its final disposal. It examines all environmental 
aspects, such as the use of natural resources, air emissions, waste generation and energy consumption. In the 
context of Demand Supply Management and Offer Supply Management, LCA provides critical information 
for supply chain decision making. Demand Supply Management (DSM): involves managing the demand for 
products or services based on market needs and resource availability. LCA can help companies understand how 
products affect the environment throughout their life cycle, which can influence consumer choice and therefore 
demand for more sustainable products. Offer Supply Management (OSM): This refers to the management of 
the supply of products or services, including supplier selection and supply chain optimisation. LCA can be used 
to assess the environmental impacts of materials and processes used by suppliers, helping companies to make 
informed decisions about supplier selection and supply chain management to improve sustainability (Camargo & 
Schweickardt, 2014; Kang et al., 2023; Huang et al., 2023; Wei & Aaheim, 2023; Yeo & Oh, 2023; Guang et al., 
2023; Sirin et al., 2023; Al Shammre et al., 2023; Yang et al., 2023; Alizamir et al., 2023; Hu & Cheng, 2023; 
Wang et al., 2023a; Liu & Ying, 2023; Rudnik et al., 2023).

2.4. Computable General Equilibrium Model

The Computable General Equilibrium Model plays a crucial role in understanding the dynamics of supply 
and demand within the production chain, particularly in the context of economic uncertainty. This model 
serves as a computational framework that simulates the interactions between various sectors of the economy, 
capturing how changes in one sector affect others through intricate feedback loops. However, determining the 
equilibrium of such a model in the face of uncertainty poses significant challenges, as it requires predicting 
the behavior of numerous interconnected factors amidst fluctuating conditions. In essence, while the model 
provides valuable insights into the overall equilibrium of the production chain, navigating uncertainty adds 
layers of complexity to its determination, emphasizing the need for robust analytical tools and methodologies 
to address such challenges effectively (Kang et al., 2023; Huang et al., 2023; Wei & Aaheim, 2023; Yeo & Oh, 
2023; Guang et al., 2023; Sirin et al., 2023; Al Shammre et al., 2023; Yang et al., 2023; Alizamir et al., 2023; 
Hu & Cheng, 2023; Wang et al., 2023a; Liu & Ying, 2023; Rudnik et al., 2023).

3. Optimal economic evaluation of Argentinean production chain with contributions and 
results

This section presents the main developments of the theoretical, practical and economic results and contributions 
of the proposed methodology. Firstly, the proposed novel methodology for obtaining the optimal economic value 
of emissions with uncertainty is developed (Section 3.1). In this context, it is shown that the fuzzy intersection 
function of the Hamacher family contains three types of t-norms, which allows a generalisation and simplification 
of the intrinsic cost index. It is reiterated that this index allows the economic valuation of variables that are not 
directly monetisable and have no associated market. In this way, some modifications have been made to the 
formulation of the index in order to reduce mathematical ambiguities and to clarify its conceptual and practical 
application in obtaining externalities.

Secondly, the practical contributions of the present methodology to the two cases of environmental impact 
reduction discussed in this paper (Section 3.2) are elaborated. These two cases are Supply Side Management 
(SSM) and Demand Side Management (DSM). These two cases are optimised by Particle Swarm Optimisation 
using a hierarchical approach facilitated by the Analytic Hierarchy Process (a variation of exponential weights 
associated with hierarchy). It will be shown that this model, a novel outcome of this proposal, incorporates 
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economic valuation of non-monetisable attributes (intrinsic cost index developed in Section 3.1) and addresses 
fundamental uncertainty (fuzzy decision making developed in Section 3.1). Furthermore, as developed in 
section 2.2, it includes both objective evaluation (maximum and minimum set of quality criteria) and subjective 
evaluation (types of t-standards and satisfaction levels or preference functions). Optimal curves are presented 
for each exponential weighting value (hierarchy), allowing the construction of efficiency frontiers for both cases 
(Section 3.2). This analysis contributes to the following section.

Thirdly, the theoretical, practical and economic contributions of the present methodology in the Argentinean 
production chain are presented through the presentation of a new market equilibrium model (Section 3.3). 
It will be shown that this equilibrium model allows to obtain the break-even point of the estuary prospects, 
according to the model of supply and demand curves. It is also shown that the efficiency frontier of intrinsic 
costs is associated with marginal costs. In this way, an introduction is developed that paves the way for future 
models that allow the objective and subjective valuation of both positive and negative externalities, subject to 
fundamental uncertainty, in line with the efficiency frontier. The important practical implications are highlighted.

3.1. Proposed novel methodology to obtain the optimal economic value of emissions with 
uncertainty

Firstly, a Life Cycle Assessment (LCA) is carried out, considering the material and fuel flow of the Argentine 
Production Chain (APC) through the following stages: resource extraction, material processing, manufacturing, 
construction, transportation and waste management (Figure 2). In this way, the parameters (including technical 
data) were mainly processed and the complete model was validated using information from public reports available 
in the database of the Ministry of Energy and Mines (Camargo & Schweickardt, 2014; Camargo, 2019, 2021, 
2022a, b, 2023; Argentina, 2023). Two cases are considered in this optimisation: Supply Side Management (SSM) 
and Demand Side Management (DSM). Supply Side Management (SSM) efficiency optimisation involves reducing 
emissions by investing in energy efficient improvements in the production chain or by changing consumption 
patterns with minimal investment. Demand Side Management (DSM) efficiency improvement involves reducing 
investment and emissions by implementing measures that encourage conservation.

Secondly, based on the production chain model (Life Cycle Analysis model - LCA), the efficiency index to 
be optimised (fuzzy intersection) is determined and the attributes to be evaluated (investment costs and 2CO  
emissions) are defined. The decision maker (Figure 2) then evaluates the indices (emissions and investment 
costs) resulting from the Life Cycle Analysis and transforms them into the fuzzy domain, taking into account 
the upper and lower bounds (see Equation 1) obtained from the upper and lower limits of the analysed Life 
Cycle Analysis (  Up

mU  and Low
mU ).

Thirdly, to find the optimal solution, this methodology uses fuzzy decision theory and analytic hierarchy 
process with artificial intelligence tools such as particle swarm optimisation metaheuristics. It provides optimal 
solutions for supply chain management and industrial processes. The values of the optimal attributes (investment 
cost and emissions) depend on the solution proposed by the Particle Swarm Optimisation (PSO) metaheuristic 
and the prioritisation proposed by the Analytic Hierarchy Process. In addition, the hierarchy (Analytic Hierarchy 
Process) and the upper and lower bounds (static) of these attributes are determined. From there, the evaluation 
of the indices is carried out, which also depends on the direction of improvement of the function (increase or 
decrease). Figure 2 analyses two cases for reducing environmental impacts (emissions), where these cases are 
made according to the decision maker’s cases (Supply Side Management and Demand Side Management) on 
emissions and the cost of the investment (carbon price).

The PSO is used to achieve consistent levels of efficiency (constant t-norm) in the optimisation of the 
Argentinean production chain and allows the generation of customised, flexible and optimal solutions with 
objectives and constraints determined by the prioritisation of the Analytic Hierarchy Process. In this sense, this 
metaheuristic aims to maximise both the fuzzy indices and their intersection, regardless of whether they are at 
maximum or minimum values. This flexibility allows the use of heuristics that are not constrained by this aspect. 
In other words, if the aim is to maximise the given indices then the value of the fuzzy upper limit ( )Up

mU ) will be 
sought to be reached. Conversely, if the aim is to minimise the indices then the value of the fuzzy lower limit 
( Low

mU ) will be sought to be reached (see Equation 1).
Fourthly, the economic valuation (Intrinsic Cost) of 2CO  emissions (carbon tax) from the Argentinean 

production chain has been compared with external taxes (Kyoto Protocol), taking into account the both cases 
(demand side management and supply side management), calculated using the PSO. This economic evaluation 
integrates both objective (maximum Up

mU  and minimum limits Low
mU ) and subjective (acceptance mµ , hierarchy 

mEW  and uncertainty) assessments through the Generic Camargo Intrinsic Cost Index and its methodology. 
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The calibration and validation of this index was therefore based on energy and 2CO  emission records from the 
Argentine government and market data. The Exponential Weights (EW) represent the hierarchy of decision 
makers (Supply and Demand Side Management) for the attributes being assessed and influence the economic 
valuation (carbon price) based on the assigned hierarchy (Section 3.3).

Fifthly, from the four aspects mentioned above, the curves associated with the attributes analysed and the 
Generic Camargo Intrinsic Cost and the efficiency frontiers separating the feasible and non-feasible areas are 
obtained. This results in a new computable general equilibrium model in which the equilibrium points and 
feasible zones are searched and the marginal cost of equilibrium is obtained, as presented in Section 3.4.

3.2. Theoretical, practical and economic contributions of the proposed methodology

3.2.1. Theoretical contributions in Fuzzy decision making theory: t-norms product

In this section it is shown from the t-norm that both the Einstein product and the algebraic product are 
special cases of the Hamacher product family. This is an advantage as it simplifies the procedures used when 
working with one or the other t-norm. The procedure for obtaining the final efficiency index and the associated 

Figure 2. Proposed novel methodology: Optimal Economic Value (Generic Camargo Intrinsic Cost - GCIC) of Supply and Demand 
Side Management in terms of Life Cycle Analysis of the Argentinean Production Chain under Fundamental Uncertainty (Fuzzy 
Decision Making) and Hierarchy Variation (Analytic Hierarchy Process - AHP) with the Exponential Weights (EW) by means of 

Particle Swarm Optimisation.
Source: The authors.
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intrinsic cost is simplified by using a general equation that covers the different particular cases for the intersection 
operators. It is recalled that the functions used are continuous and derivable, which makes it possible to obtain 
the costs associated with their variation.

As mentioned in Section 2.1, ( ),i jtp µ µ  is an operator (generally referred to as the t-norm) between the 
values of the membership functions ( iµ  and jµ ). In the state of the art there are several t-norms (Equation 2, 
Equation 5 and Equation 8): the algebraic product, the Einstein product and the particular Hamacher product. 
These t-norms have the interesting property of being differentiable, which the t-min does not have. This 
property allows us to obtain the impact of an objective that is analysed in the other cases, namely the social 
cost. The constant p (Equation 2) is a parameter that, depending on its value, defines a family of curves. As a 
result, the final intersection will be more demanding or laxer, depending on its value (Camargo et al., 2018; 
Camargo, 2019, 2021, 2022a, b, 2023).

EINSTEIN PRODUCT: The Einstein Product ( )Etp ) is a special case of the Hamacher family product ( )Htp ), as 
shown below (Equation 2, Equation 3 and Equation 4).

( ) ( ) ( )
  

2 1
i j i j

E H
i j i j i j i j

tp tp
p p

µ µ µ µ

µ µ µ µ µ µ µ µ⋅
= ⇒ =

− + +

⋅ ⋅

− −⋅ ⋅− + 	 (2)

( ) ( ) ( )2 1i j i j i j i jp pµ µ µ µ µ µ µ µ− + − = + + −⋅ ⋅−⋅ 		  (3)

( )( ) ( )( )1 2 1   2i j i j i j i jp pµ µ µ µ µ µ µ µ− + − = − +⋅ ⋅ ⇒⋅ ⋅ − = 		  (4)

ALGEBRAIC PRODUCT: The Algebraic Product ( )Atp ) is a special case of the Hamacher family product ( )Htp ), as 
shown below (Equation 5, Equation 6 and Equation 7).

( ) ( )1
i j

A H i j
i j i j

tp tp
p p

µ µ
µ µ

µ µ µ µ
= ⇒ =

+⋅ −

⋅
⋅

⋅+ − 		  (5)

( ) ( )1 1 i j i jp p µ µ µ µ= + − −⋅ ⋅+ 		  (6)

( )( ) ( )1 1 1i j i j i j i jp pµ µ µ µ µ µ µ µ−⋅ ⋅+ − = − + ⇒⋅− = 		  (7)

PARTICULAR HAMACHER PRODUCT: The Particular Hamacher Product ( 0)Htp ) is a special case of the 
Hamacher family product ( )Htp ), as shown below (Equation 8, Equation 9 and Equation 10).

( ) ( )0      
1

i j i j
H H

i j i j i j i j
tp tp

p p

µ µ µ µ

µ µ µ µ µ µ µ µ
= ⇒ =

+ +

⋅

−

⋅

+ −⋅ ⋅− ⋅ 	 (8)

( ) ( )1i j i j i j i jp pµ µ µ µ µ µ µ µ− ⋅ = + −⋅+ ⋅+ − 		  (9)

( )( )1 0    0i j i jp pµ µ µ µ⋅− − ⇒⋅ + = = 		  (10)

Through this analysis, a general and simplified expression of the intrinsic cost index is obtained and developed 
in the following section. Thus, in this article it is shown that the t-norms Einstein product ( 2p = ), Particular 
Hamacher Product ( 1p = ) and Algebraic product ( 0p = ) are special cases of the Hamacher product family. This 
discovery allows this methodology to define a general intrinsic cost index for any fuzzy t-norm of the product type.

3.2.2. Intrinsic Cost Index based on Fuzzy Decision Making Theory

Intrinsic Cost (IC) index: The economic evaluation of each criterion is given by the intrinsic cost index 
(Equation 11). The Intrinsic Cost Index (IC) takes into account the economic valuation of non-monetary indices 
based on an objective valuation (incremental valuation based on Upper and Lower limits), subjective and 
hierarchical (Analytic Hierarchy Process). The intrinsic cost index corresponds to the derivative of one index 
with respect to the other (cost of emissions with respect to emissions), which is not easy to determine due 
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to the presence of uncertainty and subjectivity. In the past, this index was only obtained for the t-norm of 
Einstein’s product and with another index for electricity systems developed by Schweickardt & Pistonesi (2010) 
and improved by Camargo et al. (2018, 2023a, b); Camargo (2019, 2021, 2022a, b, 2023). In Equation 11, the 
intrinsic cost (IC) then represents the slope of the efficiency frontier of the functional relationship between the 
specified attributes, and the sign ± depends on whether it’s a growth (+) or a decrease (-).

/

11  
/ /

 
/ / /

                    i jEWj j j i j i ji
j i iUp Low

i j i i i j i j i j

U U EW
IC

U U U U U
µ µµ µ

µ µ

 
 −  
 ⋅ ⋅ ⋅

∂ ∂ ∂ ∂∂
= = ∀ = ±
∂ ∂ ∂ ∂ ∂ −

	 (11)

With this method, the variable jU , which is related to criterion j (investment costs), is the mathematical 

derivative of the variable iU , which is generally related to index i (emissions). In this way, the term j

j

∂µ

∂µ
 corresponds 

to the functional derivative of the fuzzy function j∂µ  respect to the fuzzy function i∂µ  (see Equation 1). If both 
attributes (i and j) correspond to decrease (see Figure 1a) or growth (see Figure 1b) then it will have a (+) sign, 
in any other case it will be (-). The latter influences the sign of the index and determines whether it is a penalty 
or an incentive (see Section 3.3.1 and Section 3.3.2.).

Schweickardt Intrinsic Cost (SIC) proposal: The first proposal (Schweickardt & Pistonesi, 2010) have 
obtained this term considering the t-norm Einstein Product of all attributes. If there are 4 attributes (Equation 
12, Equation 13 and Equation 14) and the t-norm Einstein Product, then the t-norms of the attributes are 
obtained, applying the properties of the t-norms.

( ) ( )
1 2

1 2
1 2 1 2

,
2

t µ µ
µ µ

µ µ µ µ
=

−
⋅

⋅+ − 		  (12)

( )( ) ( )
( ) ( )( )

3 1 2
3 1 2

3 1 2 3 1 2

,
, ,

2 , ,

t
t t

t t

µ µ µ
µ µ µ

µ µ µ µ µ µ
=

−

⋅

⋅+ −
		  (13)

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )( )

4 3 3 1 2
4 3 1 2

4 3 3 1 2 4 3 3 1 2

, , ,
, , ,

2 , , , , , ,

t t t
t t t

t t t t t t

µ µ µ µ µ
µ µ µ µ

µ µ µ µ µ µ µ µ µ µ
=

−

⋅

⋅− +
	 (14)

From this expression, it is necessary to solve for ( )  j ifµ µ= , for any two attributes  i and j, and then obtain 

the functional derivative j

i

µ

µ

∂

∂
 (holding other attributes constant). The result is a long and complex mathematical 

equation with only 4 attributes to analyse (Equation 15 to Equation 17), which is impractical for problems with 

more objectives and constraints. To show the complexity of this proposal, the following expression is defined 
for n fuzzy functions and auxiliary indices r, s, q and z:

( )
( ) ( )

4 2 1

2 1 2 1 1

  
2 2

n
qq

r q z n n s s
r z z zr s z s z z

tp
µ

µ µ µ µ µ
µ µ µ µ

=
+

= = = + = = ⋅

… … … … =
   

− − − −     
   

∏
∏ ∑ ∏ ∏ ∏

	 (15)

( )( )1 1  ,   j r q z n r q z nf tpµ µ µ µ µ µ µ µ µ µ µ= … … … … … … … … 		  (16)

( )( ) ( )1 1 1,             0j
i n r q z n n

i i i
f tp tp

µ
µ µ µ µ µ µ µ µ µ µ

µ µ µ

∂ ∂ ∂
= … … … … … … ∀ … =

∂ ∂ ∂ 	 (17)

It is observed in Equation 15 to Equation 17 that the function is complex to solve for multiple fuzzy functions 
(Schweickardt & Pistonesi, 2010), therefore this proposal is not feasible. Therefore, the Schweickardt intrinsic 
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cost proposal is written in Equation 18. The equation has been simplified by including one function due to its 
infeasibility for more than 2 attributes.

( )( )

11  

1 1
11  

,
i

j

Up low EWjji i
ij i n nUp lowj iii

EW
j

U UEW
SIC f tp

EW U U

µ
µ µ µ µ µ

µ

µ

 
−  

 

 
 − 
 

 
 

     − ∂    = ± … … …     ∂ −    
 
 

⋅ ⋅ ⋅ 	 (18)

Camargo Intrinsic Cost (CIC) proposal: An improved proposal of the current research line called Camargo 
Intrinsic Cost (CIC) is presented here. In Equation 19, since the Ceteris Paribus clause is applied, then it is only 
necessary to compare two attributes, since all the others will be constant. Then, the next step is to derive the 
term ( ) ,i rµ µ µ  respect to iµ , it is applyiing the clause ‘Ceteris Paribus’ (Camargo et al., 2018; Camargo, 2023).

( )
   2 tp       0
    22

i j j j j

i i i ii j i j
tp

µ µ µ µ µ

µ µ µ µµ µ µ µ

∂ − ∂
= ⇒ = − ∀ =

∂ −

⋅

⋅ ∂−
⋅

+ −
		  (19)

The Camargo Intrinsic Cost is given by Equation 20 (Einstein product):

( )
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   2
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    2 2

i

j

Up low EWjj j j i ji i
ij Up lowj i i i j i jii
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⋅



⋅ ⋅ ⋅
⋅

	 (20)

Generic Camargo Intrinsic Cost (GCIC) proposal: This paper presents a novel, improved and generic 
proposal called Camargo Intrinsic Cost (CIC). To simplify the algorithm, an auxiliary variable mβ  is added to 
the definition of the fuzzy functions (Equation 21 and Equation 22), depending on whether it is a decrease 
(Figure 2a) or a growth (Figure 2b).

BEGIN /* Fuzzy decision making with this new methodology */

Data: Objective and Constraint indices mU , Exponential Weights mEW  (AHP), Lower Low
mU  and Upper Up

mU  Limits.

FOR (m 1: 2= ) DO

Step 1: Calculate the auxiliary variable β  according to the Equation 21.

     1
    

  0
m

m

U growth
decreaseof U

β


= 


		  (21)

Step 2: Calculate the states mµ  using the next function according to the Equation 22.

( )

1
 ,      

 
1        ,    

  
,   

m

m Low
EW m mUp Low

Low Upm m m m
m m m m m mUp Low Up Low

m m m m Up
m m

m

U U
U U U U

U U U
U U U U

U U

β

µ β β

β

−
 ≥
    − −    = − + ≤ ≤     − −    



⋅
 ≤



⋅


	 (22)

END FOR

Step 3: Calculate ( )tp ,i jµ µ  using the chosen t-norm, where 1i =  is the 2CO  emissions and 2j =  is the Investment 
Cost according to the Equation 23.



Production, 34, e20230091, 2024 | DOI: 10.1590/0103-6513.20230091 12/30

( ) ( )

( )

( )

, 2
2

: , 1
, 0

,
(1 )

, Another Case 
(1 )

i j

i j i j

i ji j
i j

i ji j i j
i j i j

i j

i j i j

p

p
p

tp
p p

p p

µ µ

µ µ µ µ

µ µµ µ
µ µ

µ µµ µ µ µ
µ µ µ µ

µ µ

µ µ µ µ

⋅
=

− + − ⋅


=
 ⋅ == =  ⋅+ − ⋅ + − ⋅ 
 + − ⋅

 ⋅

 + − ⋅ + − ⋅






	 (23)

END PROGRAM
Mathematically deriving Equation 22 (where m equal to i or j) with respect to /i jU  gives Equation 24.

( ) /

11  
/ /

/ / /

2 1 i jEWi j i j
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β µ
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⋅ − ⋅=

∂ −
⋅ 		  (24)

From the t-norm of the Generic Hamacher product, the mathematical derivative of the jµ  membership function 
with respect to iµ  is obtained in Equation 25, where 1i =  is the 2CO  emissions and 2j =  is the Investment Cost.
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( ) ( ) ( )
1 tp      0  
1 1

j j j i j

i i i i i i j i j

p p
p p p p

µ µ µ µ µ

µ µ µ µ µ µ µ µ µ

   ∂ + −   ∂ ∂   = − ∀ = =       ∂ + − ∂ ∂  + −

⋅

+ −      

⋅
⋅


⋅ ⋅ ⋅


	 (25)

According to Equation 25, Equation 26 is obtained, where: 1) if it is true that 0p =  then the intrinsic cost 
of the particular Hamacher product is obtained, 2) if it is true that 1p =  then the intrinsic cost of the algebraic 
product is obtained and 3) if it is true that 2p =  then the intrinsic cost of the Einstein product is obtained. This 
is logical because replacing these values of p in Equation 26 gives the corresponding t-norms. The negative sign 
indicates that, with constant efficiency, if one fuzzy index increases, the other must decrease and vice versa, 
which is true for all types of t-norms and fuzzy indices. Equation 27 then shows the new Generic Camargo 
Intrinsic Cost for Fuzzy Linear Function (see Equation 1) and the Hamacher family.
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The resulting sign indicates the type of externality it has, it is a positive externality (Case 1) if it satisfies 
i jβ β≠  and it is a negative externality (Case 2) if it satisfies  i jβ β= . The term ija  is the preference ratio (AHP), 

which gives the relative evaluation between the evaluated indices ( 2CO  emissions and investment costs). The EWs 
are obtained from an analysis of the Perron eigenvalue of the preference matrix, which is equivalent to the 
AHP (Camargo, 2023). The term ijb  is the incremental cost of an attribute j with respect to another of interest 
i  ( 2CO ). The term ijc  is related to the influence of the acceptance of attributes and the hierarchy of decision 
makers. It should be noted that if the exponential weights were one, i.e. if there were no contraction or dilation 
of the preference functions due to their non-hierarchisation, then this term would be one and would disappear 
from the equation. In other words, if there is no over- or undervaluation of the fuzzy attributes, there will be 
no over- or under-cost (in our economic case). The term ijd  corresponds to the mathematical derivative of the 
fuzzy function jµ∂  with respect to the fuzzy function jµ∂ , which is associated with the slope of the functional 
relationship of the preference functions. The factor ijb  determines the objective valuation (incremental cost) of 
attribute j, while ija , ijc  and ijd  determine the subjective valuation.

The equation is improved by including a factor that determines the sign as a function of the parameters used 
to model the sign of the slope of the fuzzy functions ( iβ  and jβ ). In summary, this improvement of the index 
takes into account the three types of t-norm studied in this line of research, in addition to clearly incorporating 
their sign, which simplifies their analysis and practical application in a comparative study.

Generic Camargo Intrinsic Cost (GCIC) analysis: An improved and novel proposal of the current research 
line called Generic Camargo Intrinsic Cost (GCIC) is presented here. The analysis of the generic Camargo intrinsic 
cost expression is summarised in Equation 28, where it is observed that if the absolute and relative valuation 
terms are very high, then the economic valuation of attribute   i will be high with respect to j (see Section 3.4.1. 
and Section 3.4.2.).

If ija , ijb , ijc  and ijd  are equal to zero, then the economic valuation of attribute  j will be zero (   1i jGCIC = ). 
If ija , ijb , ijc  and ijd  are equal to the one unit, then the fuzzy function for the two attributes ( iµ  and jµ ) will 
have the same value ( )i jµ µ= ), so the economic valuation will be one (   1i jGCIC = ). If ija , ijc  and ijd  are equal 
to the one unit, then a constant value ijb  will then be obtained that is independent of the evaluated indices, 

i.e. the intrinsic cost will be an incremental cost between the extreme values (   
Up low

jj
i j ij Up low

ii

U U
GCIC b

U U

−
= =

−
). 

If additionally it is satisfied that ( 0low low
j iU U= = ) the intrinsic cost will be equal to the average cost (or marginal 

cost) of the maximum values (   
Up
j

i j Up
i

U
GCIC

U
= ).

Therefore, based on this theoretical analysis, the proposed index can be used as an economic indicator
to value non-monetary attributes and as a regulatory mechanism. In the context of the Coase theorem and 
property rights, it is the price at which the bonds must be traded according to the negative externality (Case 2) 
produced and, it is a tax to be paid by the production chain. In the case of a positive externality (Case 1), it is 
the subsidy received as an incentive or compensation for the emissions benefit produced.
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
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
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 = ∩ = ∩ =


 = ∩ = ∩ = ∩ = =


   

In Equation 28, it is observed that when the fuzzy attributes are equal ( ijc  and ijd  are equal to the one unit), 
the effect of the p -factor disappears and the Camargo intrinsic cost function becomes independent of the
type of t-norm intersection used (see Section 3.4.1. and Section 3.4.2.). In addition, the form of this function is 
analysed according to its derivative (Equation 28). Where the logical condition ( ) ( )( )0   1i jβ β= ∩ =  is associated
with Supply Side Management Optimisation (Case 1), while the logical condition (  0)i jβ β= =  is associated with 
Demand Side Management Optimisation (Case 2). In this way, Case 1 corresponds to a positive externality, 
implying a subsidy, whereas Case 2 corresponds to a negative externality, implying a tax or fine. This expression 

(28) 
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would be a good approximation since fuzzy attributes are usually close in value ( i jµ µ≈ ). Then the mathematical 
derivative of the Generic Camargo Intrinsic Cost depends on the inverse difference of the cost and emission 

weights (
1 1

j iEW EW
− ). Depending on which one dominates, the Generic Camargo Intrinsic Cost curve will be 

increasing ( j iEW EW< ) or decreasing ( j iEW EW> ) and it will be constant ( 1j iEW EW= = ) for a set of exponential 
weights and preference functions (see Section 3.3.3.).

( )
1 1      

 
2 1     
2 1

j i

Up low
EW EWj ji i

i j i j iUp low
j j i i

U UEWGCIC
EW U U

βµ µ µ
β

 
 −  
 ⋅

⋅ ⋅
     −−

= ⇒ = −         − −⋅  
⋅

 

	 (29)

( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( )

 

 ,  0
 

       0 ,  

  
  

,  

i j i j i j i j i j

i j i j i j i j i j i j
i

i j i j

EW EW EW EW

GCIC EW EW EW EW

ctte
EW EW

µ µ β β β β

µ µ β β β βµ

µ µ

= ∩ = ∩ > ∪ ≠ ∩ <
>


∂ = < = ∩ = ∩ < ∪ ≠ ∩ >∂ 

 = ∩ =

	 (30)

If the attributes i and j  have the same exponential weights ( )i jEW EW= , which implies indifference with 

respect to the attributes ( 2CO  and investment cost), then Equation 31 is obtained (see Section 3.4.1. and Section 

3.4.2.).
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If it is admitted that iEW  and jEW  are inverses, then Equation 32 is obtained (see Section 3.4.2.). This would 
imply that the decision maker has conflicting hierarchy and ranking criteria.
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3.2.3. Influence of Exponential Weights (EW) on the attributes indices

An analysis of the preference function based on the influence of the exponential weights is then carried out 
(see Section 3.4.2). This analysis is important to understand the shape of the curves obtained and their practical 
implications, and for the sake of clarity and coherence of the development, it is analysed separately from the 
previous development. By developing Equation 2 and removing the index mU  associated with attribute m ( 2CO  
and investment cost), Equation 34 can be obtained.
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If the function is a decrease (and growth) function (It means 0mβ =  and 1mβ = ), if the attribute has very high 

priority (
EW

µ ), its Exponential Weighted ( mEW ) will be very high and therefore the preference function 

will be low ( 1mµ  ). In this way, in Equation 34 and Equation 35, if it is true that 0mβ =  (otherwise 1mβ = ), and 

1
m

mEW
µ  (otherwise 

1
m

mEW
µ ), then it occurs that 

1

0mEW
mµ →  (otherwise 

1

1mEW
mµ → ).

Consequently, it follows that the index associated with the attribute mU  corresponds to the upper limit Up
mU  

(it means Up
m mU U→ ). Consequently, it follows that the index associated with the attribute mU  corresponds to 

the lower limit ( )Low
m mU U→ . And vice versa, if it is true that 0mβ =  (otherwise 1mβ = ), and 

1
m

mEW
µ  (otherwise 

1
m

mEW
µ ), then it occurs that 

1

1mEW
mµ →  (otherwise 

1

0mEW
mµ → ). Consequently, it follows that the index 

associated with the attribute mU  corresponds to the upper limit Up
mU  (it means Up

m mU U→ ). This means that 
under these conditions, the lower extreme value of the fuzzy index is tended towards (see Section 3.4.2). This 
is the effect of the exponential weights associated with the decision maker hierarchy on the resulting indices, 
according to the present methodology, which will be demonstrated in the analysis of the optimisation results in 
the corresponding graphs. This will be demonstrated in Section 3.3.1 and in Section 3.3.2 and its relationship 
with the Generic Camargo Intrinsic Cost.
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3.3. Practical contributions of the proposed methodology: two cases

As explained in Section 3.1. of this paper, the methodology used is as follows:
Firstly, a life cycle analysis is carried out for the five sectors considered: resource extraction, material processing, 

manufacturing, construction and transport. This life cycle analysis takes into account the inputs of materials and 
fuels. Then, investment cost and emissions indices are obtained for the Argentine production chain according 
to two cases: 1) Supply Side Management (SSM) and 2) Demand Side Management (DSM). In Case 1, the aim is 
to minimise emissions by maximising the investment made. Case 2 seeks to minimise both indices or attributes.

Secondly, fuzzy functions are obtained from the investment and emission cost indices for each Exponential 
Weighting (EW) value. In addition, the fuzzy intersection is obtained for each type of t-norm according to the 
value of p.

Thirdly, these indices of the two cases are optimised using the Particle Swarm Optimisation metaheuristic.
Fourthly, these cases (Supply and Demand Management) are economically evaluated (carbon price) from the 

case of the fuzzy decision maker according to the optimal attributes of emissions and investment costs. Generic 
Camargo Intrinsic Cost Index (Section 3.2.) is used to economically evaluate the solutions obtained according 
to the two cases studied (Section 3.3.1. to Section 3.3.3.).

Fifthly, by analysing these indices, a new model for determining the novel Computable General Equilibrium 
Model is introduced (Section 3.4.) and the efficiency frontiers separating the feasible and non-feasible areas 
are obtained. This results in a new computable general equilibrium model in which the equilibrium points 
and feasible zones are searched and the marginal cost of equilibrium is obtained, as presented in Section 
3.4. The methodology as a whole is novel and lays the groundwork for future research proposals in this area, 
including optimisation models and analysis.
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The analysis starts with the investigation of Case 1, which refers to Supply Side Management (SSM) strategies 

( ) ( )( )0   1i jβ β= ∩ = . These strategies aim to increase investment costs ( jU ) in order to reduce emissions ( iU ) in the 

Argentine production chain, reflecting a positive externality and thus implying a subsidy (see Section 3.3.1.). 
After examining Case 1, the focus shifts to Case 2 (  0i jβ β= = ), which includes Demand Side Management 
(DSM) strategies and they aim to reduce investment costs ( jU ) and by increasing production efficiency with 
minimal equipment and it is associated with Demand Side Management Optimisation (see Section 3.3.2.) and 
the emissions ( iU ). It indicates a negative externality and therefore implies a tax or a fine.

After discussing Case 1 and Case 2 separately, the analysis compares the results of these strategies, including an 
examination of the Generic Camargo Intrinsic Cost (GCIC) in both cases, which provides insight into the economic 
implications of each approach. Throughout the analysis, Argentine government and international market data 
on 2CO  emissions are used to calibrate and validate the model (Argentina, 2023; Spain, 2023). Curves generated 
from Particle Swarm Optimisation solutions for different exponential weights (EW) are used to illustrate the 
results of the strategies. The analyses are first presented separately for each exponential weight to validate the 
calculated curves and compare them with international carbon prices. The findings and contributions of this work 
are then outlined, including their potential implications for future computational general equilibrium models 
of projects (Section 3.4.1.). Complementary analysis is also provided to further elucidate the implications of the 
policies discussed (Section 3.4.2.). Overall, these efforts are in line with the overall objective of this paper, which 
is to compare novel economic valuation models in order to establish an emissions price for valuing externalities 
and providing effective environmental regulatory tools.

3.3.1. Case 1: Supply Side Management Optimisation

First, in this subsection, Supply Side Management Optimisation aims to minimise emissions while maximising 

investment costs in the Argentinean production chain ( ) ( )( )0   1i jβ β= ∩ = . This is a case of a positive externality 

from the production chain to demand, as the investment benefits society by reducing emissions. Figure 3 and 

Figure 4 illustrate the impact of different exponential weights, where Investment costs in USD
MWh

 
 
 

 and emissions 

in 2  TonCO EQ
Mwh

 
 
 

 are in line with the data provided by the Ministry of Energy and international values (Argentina, 

2023; Spain, 2023).
The life cycle analysis yielded an emission interval of 2  0.30;0.39 TonCO EQ

Mwh
    and the investment costs yielded 

an emission interval of 1.5;5 USD
Mwh

   , the limits of which correspond to the fuzzy limits (see Figure 1, Figure 3 and 

Figure 4). The case where the exponential weights are reciprocal ( 1
j

i
EW

EW
= ) was analysed, which makes their 

relationship in the Generic Camargo Intrinsic Cost exponential (see Equations 29 to 32). This observation shows 
that the cost vs. emissions curves are increasing and compact within a feasible cost vs. emissions combination 
zone for the proposed efficiency.

Secondly, as the priority (exponential weight) associated with the emissions ( iU ) decreases, the value of the 

exponential weight decreases accordingly ( 0iEW → ). Consequently, when the reciprocal exponential weights are 

evaluated ( 1
j

i
EW

EW
= ), if the emission is considered unimportant and its exponential weight is small ( 1jEW  ), 

then the investment cost ( jU ) becomes significant, leading to a high exponential weight ( jEW →∞). Consequently, 

it is observed that the curve tends to be horizontal and linear towards the upper cost limit ( Up
jU ). Conversely, 

as the priority of emissions increases ( iEW →∞), the curve tends to be vertical and linear towards the lower cost 
limit. This observation is consistent with the mathematical analysis carried out in Section 3.2.3. With this in 
mind, when the fuzzy function increases ( 1mβ = ) and the attribute has a very high priority ( 1mEW  ), its preference 
function will be very low ( 1mµ  ). Conversely, when the function is decreasing (Equation 34 and Equation 35), 
if the attribute has a very low priority ( 1mEW  ), its preference function will be very low ( mµ  ). Then the 
function will tend to the upper ( Up

mU ) or lower ( Low
mU ) value according to the extreme cases seen in this analysis. 

The function will tend to the upper cost ( Up
jU ) when it happens that ( ) ( )0j iEW EW→∞ ∩ → .

Thirdly, the figures are presented in order of t-norm type: 0p =  (Figure 3a), 1p =  (Figure 3b), 2p =  (Figure 4a) 
and 3p =  (Figure 4b). It can be observed that the curves are concentrated in a region (feasible region) whose area is 
maximum for 0p =  (Figure 3a) and minimum for 2p =  in Figure 3a, and that this area decreases as   p increases and 
vice versa, indicating that the non-feasible region increases (see section 3.4). As a result, the Einstein product, which 
is the most demanding (the lowest t-norm function ( ),i jtp µ µ ), has the smallest feasible area. This phenomenon 
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Figure 3. Investment Cost ( jU ) vs. Emissions ( iU ) for: (a) Particular Hamacher Product ( )  0p=  and (b) Generic Hamacher Product 
( )  0.5p=  in Case 1.

Source: The authors.

Figure 4. Investment Cost ( jU ) vs. Emissions ( iU ) for: (a) Algebraic Product ( ) 1 p=  and (b) Einstein Product ( )  2p=  in Case 1.
Source: The authors.
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is reminiscent of the supply curve in economic theory and regulation, a concept that will be discussed further in 
Section 3.4. It can therefore be concluded that, similar to the supply curve in economic theory, the present proposal 
for Supply Side Management results in a curve from which the production chain tries to identify the boundary 
between the feasible and non-feasible zones. The results are logical and, in principle, the curves calculated by the 
PSO are correct. It should be noted that the slope of the investment cost curves also changes as the factor p varies, 
and this in turn affects the value of the Generic Camargo Intrinsic Cost Index, as will be seen in Section 3.3.3.

3.3.2. Case 2: Demand Side Management optimisation

Figures 5 and 6 show the Demand Side Management of optimal investment costs and emissions.
Firstly, in this subsection, Demand Side Management (DSM) optimisation aims to minimise emissions 

while minimising investment costs in the Argentinean production chain ( 0i jβ β= = ), where Figure  5 and 
Figure 6 illustrate the impact of exponential weights resulting from changes in their priorities. This is a case of 
a negative externality from the production chain to the demand side, as the minimum investment harms society 
by reducing emissions less. In addition, the analysis includes the case where exponential weights are reciprocal 

( 1
j

i
EW

EW
= ). Investment costs in USD

MWh
 
 
 

 and emissions in 2Ton CO  EQ
Mwh

 
 
 

 are in line with the data provided by 

the Ministry of Energy and international values (Argentina, 2023; Spain, 2023). The life cycle analysis yielded an 

emission interval of 2Ton CO  EQ0.30;0.39
Mwh

    and the investment costs yielded an emission interval of USD1.5;5
Mwh

   , 

the limits of which correspond to the fuzzy limits (see Figure 1, Figure 5 and Figure 6).
Secondly, similar to Case 1, as the priority (exponential weight) associated with the emissions ( iU ) decreases, 

the value of the exponential weight decreases accordingly ( 0iEW → ). Consequently, when the reciprocal 
exponential weights are evaluated ( 1

j
i

EW
EW

= ), if the emission is considered unimportant and its exponential 
weight is small ( 1jEW  ), then the investment cost ( jU ) becomes significant, resulting in a high exponential 
weight ( jEW ∞→ ). Consequently, it is observed that the curve tends to be horizontal and linear towards the lower 
cost limit ( Low

jU ). Conversely, as the priority of emissions increases ( iEW ∞→ ), the curve tends to be vertical and 
linear towards the upper cost limit ( Up

jU ).

Figure 5. Investment Cost ( jU ) vs. Emissions ( iU ) for: (a) Particular Hamacher Product ( )  0p =  and (b) Generic Hamacher 
product (   0.5p = ) in Case 2.

Source: The authors.
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This observation is consistent with the mathematical analysis carried out in Section 3.2.3. In this way, if the 
function is increasing ( 1mβ = ) and the attribute has a very high priority ( 1jEW  ), its preference function will be 
very low ( 1mµ  ). Conversely, when the function is decreasing (Equation 34 and Equation 35), if the attribute 
has a very low priority ( 1jEW  ), its preference function will be very high ( 1mµ  ). The function will tend to 
the upper ( Up

mU ) or lower ( Low
mU ) value according to the extreme cases seen in this analysis. In this case, the 

function will tend to the upper cost ( Up
jU ) limit when it happens that ( ) ( )0 0j iEW EW→ ∩ → . It can be seen that 

the curves are concentrated in a zone (feasible zone) that is maximum for 0p =  and decreases as p increases, 
i.e. the non-feasible zone expands. Therefore, the one with the smallest feasible area is the Einstein product, 
which is the most demanding. This is reminiscent of the demand curve in economic theory and regulation, and 
is explained in Section 3.4.

Thirdly, similar to the first case, the figures are presented in order of t-norm type: 0p =  (Figure 5a), 0.5p =  
(Figure 5b), 1p =  (Figure 6a) and 2p =  (Figure 6b). The curves are concentrated in a region (feasible region) 
whose area is maximum for 0p =  (Figure 3a) and minimum for 2p =  in Figure 3a, and that this area decreases 
as p increases and vice versa, indicating that the infeasible region increases (see Section 3.4).

A feasible region is then bounded by the maximum desired investment cost and the minimum desired 
efficiency of the proposed solution. All solutions within the infeasible region (defined by the set of curves 
for each exponential weight that make up the infeasible region) would yield less than the expected efficiency 
( boundarytp ). The boundary between the feasible and infeasible regions is known as the efficiency frontier or 
Pareto frontier of the maximum tolerable investment (Section 3.4.2.). It can be observed that, in line with the 
supply curve in economic theory, the present Demand Side Management proposal yields a curve from which 
the demand of the production chain seeks the boundary between the feasible and non-feasible zones, as these 
points represent where production costs are highest and emissions are minimised.

Fourthly, the intersection of the curves from the two cases (Case 1 and Case 2) gives the feasible solution, 
similar to the producer surplus in the law of supply and demand. Consequently, if emissions are negligible, the 
exponential weight will be small and the preference function will be greatly diluted (see Figure 1). Therefore, 
the investment made will be indifferent and, as a consequence, it will not vary, tending towards the value of the 
index in its fuzzy transition towards its upper limit Up

jU  for any emission value (see Equation 2 with 0jβ =  and 
Figure 2). Similarly to Case 1, it is observed that the curves are concentrated in a region (feasible region) that is 

Figure 6. Investment Cost ( jU ) vs. Emissions ( iU ) in Case 2 for: (a) ( )1p =  and (b) ( )2p = .
Source: The authors.
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maximal for 0p =  and decreases as p increases, indicating an expanding non-feasible region. Consequently, the 
Einstein product, which is the most demanding (the lowest t-norm function ( ),i jtp µ µ ), has the smallest feasible 
area. This phenomenon is similar to the supply curve in economic theory and regulation, a concept that will be 
discussed further in Section 3.4. It can therefore be concluded that, like the supply curve in economic theory, 
the proposed approach to supply side management results in a curve from which the production chain seeks 
to identify the boundary between the feasible and non-feasible zones. This boundary represents the points 
where production costs are minimised and emissions are minimised. The Generic Camargo Intrinsic Cost can be 
negative according to the mathematical development, but its absolute value is taken into account. The results 
are logical and, in principle, the curves calculated by the PSO are correct. It should be noted that the slope of 
the investment cost curves also changes as the factor p varies, and this in turn affects the value of the Generic 
Camargo Intrinsic Cost Index, as will be seen in Section 3.3.3.

3.3.3. Comparison of intrinsic cost (case 1 and case 2)

This section compares and analyses the two cases (Case 1 and Case 2), focusing on the influence of these 
exponential weights (associated with the decision maker’s priorities) on the resulting indices (Figure 7 and 
Figure 8). These figures are presented in order of t-norm type: 0=  (Figure 7a), 1p =  (Figure 7b), 2p =  (Figure 8a) 
and 3p =  (Figure 8b).

The impact of the resulting fuzzy confluence variation is shown in Figure 7 and Figure 8, which illustrate 
the analysis of two scenarios within the Argentinean production chain: 1) Supply Side Management (SSM) and 
2) Demand Side Management (DSM) optimisation, using different Exponential Weights (EW) as determined by 
the Analytical Hierarchy Process. In the case of a positive externality, the Generic Camargo Intrinsic Cost (GCIC) 
will be positive (according to the mathematics developed), while the opposite is true for a negative externality; 
however, in the present analysis, the absolute value is considered. This approach simplifies the analysis as both 
indices have the same magnitude but different signs. Nevertheless, the sign is interpreted in the analysis to 
indicate the effect that the increase or decrease in emissions will have from the case being analysed (Supply 
and Demand Side Management).

Figure 7. Generic Camargo Intrinsic Cost vs. Emissions ( iU ) for both cases (1 and 2): (a) Particular Hamacher Product ( )  0p=  and 
(b) Generic Hamacher Product ( )  0.5p= .

Source: The authors.
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Firstly, the graph of the two calculated attributes (investment cost jU  and emissions iU ) is examined in 
relation to the analysed attributes and the Generic Camargo Intrinsic Costs. Figure 7 and Figure 8 show an 

emission interval 2Ton CO  EQ0.30;0.39
Mwh

   , which is consistent with the results in the above sections. The interval 

for the Generic Camargo Intrinsic Cost is 
2

0;500
  
USD

Ton CO EQ
   , reaching 

2
500

  
USD

Ton CO EQ  in extreme solutions, while 

historical carbon bond prices are in the range 
2

20;100
  
USD

Ton CO EQ
    (see Figure 7).

Secondly, it is important to analyse that any reduction in emissions represents a positive externality (Case 1), 
whereas any increase in emissions represents a negative externality (Case 2). Similarly to the first case, the figures 
are presented in order of t-norm type: 0p =  (Figure 7a), 0.5p =  (Figure 7b), 1p =  (Figure 8a) and 2=  (Figure 8b). 
It is observed that the slope of the generic Camargo intrinsic cost is inversely related to the factor p, which 
defines the family of t-norm Hamacher’s products. Specifically, when 0p =  (particular Hamacher’s product), these 
intrinsic cost curves have high slopes, whereas for high values of p ( 2p = ), the Generic Camargo intrinsic cost 
curve has low slopes. This information is crucial when defining the externality; choosing low values of p can 
lead to significant variation in the penalty or subsidy amount, while the opposite is true for high values of p.

Thirdly, a feasible region is defined based on the maximum desired efficiency of the proposed solution. 
It can be observed that the curves are concentrated in an area (feasible area) whose area is maximal for 0p =  
(Figure 7a) and minimal for 2p =  in Figure 8a and this area decreases as p increases, and vice versa, indicating 
that the non-feasible area is increasing (see Section 3.4). Then Consequently, the Einstein product, which is the 
most demanding (the lowest t-norm function ( ),i jtp µ µ ), has the smallest feasible area. Solutions falling within 
the infeasible region (defined by the curves representing each exponential weight) would deliver less than the 
expected efficiency ( mintp ). The boundary between the feasible and infeasible regions forms the efficiency frontier 
or Pareto frontier of the maximum tolerable investment. The intersection of the two curves indicates the feasible 
solution, analogous to the producer surplus in the law of supply and demand. Note that the endpoints of these 
curves form a “U” curve that defines a feasible region (see Section 3.4.2). This feasible region is defined by the 
set of possible values of these curves (the image of the function), while an infeasible region is defined by the 
values that cannot be reached for any exponential weighting, unless the efficiency of the required solution is 
reduced (value of the t-norm). The results are consistent and allow comparisons between different curves, as 
presented in Section 3.3.3.

Figure 8. Generic Camargo Intrinsic Cost vs. Emissions ( iU ) for: (a) Algebraic Product ( ) 1 p=  and (b) Einstein Product ( )  2p=  for 
both Cases (1 and 2).
Source: The authors.



Production, 34, e20230091, 2024 | DOI: 10.1590/0103-6513.20230091 22/30

Fourthly, and as a result, the Generic Camargo Intrinsic Cost remains a reliable indicator of energy efficiency 
and sustainability, as it includes both economic costs and environmental costs or benefits ( 2CO  emissions), 
while the price of carbon bonds facilitates investment in the Argentinean production chain. By refining the 
mathematical equation of the Generic Camargo Intrinsic Cost Index, this work has successfully extended its 
applicability to other types of t-norms (continuous and differentiable). The logical results show that the curves 
calculated by the Particle Swarm Optimisation are generally accurate and the prices obtained are in line with 
international values (Camargo, 2019, 2021, 2022a, b, 2023; Argentina, 2023; Spain, 2023).

3.4. Economic contributions of the proposed methodology

3.4.1. Generic Camargo Intrinsic Cost analysis with equal fuzzy functions

Firstly, in this section, the two cases in the Argentinean production chain are analysed in relation to the 
Generic Camargo Intrinsic Cost analysis with equal fuzzy functions, highlighting the theoretical, practical 
and economic contributions in the Argentinean production chain. The Figure 9 shows an emissions interval 

2Ton CO  EQ0.30;0.39
Mwh

   , which is consistent with the emissions reported in the above sections.

Secondly, Figure 9 shows the effect of varying the exponential weights (EW) as a result of varying their 
priorities when the exponential weights are reciprocal ( i jµ µ= ), which would make the Generic Camargo Intrinsic 
Cost exponential (see Equation 29 in Section 3.2.2). In this situation, since the preference functions are the 
same ( i jµ µ= ), the Generic Camargo Intrinsic Cost is indifferent to the t-norm used and therefore the same curve 
is obtained regardless of the value of p. In addition, and in the same way as discussed above, the exponential 
weights associated with investment cost and emissions are reciprocal ( 1

j
i

EW
EW

= ). With this in mind, the results 
of this analysis (Figure 9) are interesting.

To do this, it is necessary to revisit the analysis presented in Equation 29 and Equation 30 of Section 3.2.2, 
where the influence of exponential weights ( /i jEW ) and preference functions ( /i jµ ) on the Generic Camargo 
Intrinsic Cost was discussed. In this sense, it was seen that the mathematical derivative of the Generic Camargo 

Intrinsic Cost depends on the inverse difference of the cost and emission weights (
1 1

j iEW EW
− ). Depending on 

which one dominates, the Generic Camargo Intrinsic Cost curve will be increasing ( j iEW EW< ) or decreasing 
( j iEW EW> ) and it will be constant ( 1j iEW EW= = ) for a set of exponential weights and preference functions. 
In the case that the Generic Camargo Intrinsic Cost is constant, its value will correspond to the objective valuation 
given by the maximum and minimum limits of emissions and costs obtained.

Thirdly, these curves have a feasible and infeasible range for the efficiency analysed, which is also discussed 
in more detail in the next subsection. All solutions in the feasible region (determined by the set of curves for 
each exponential weight that make up the infeasible region) would require more than the expected efficiency 
( mintp ), as explained in section 3.4.2. The Generic Camargo Intrinsic Cost (GCIC) obtained is consistent and logical 
with the information provided by the Argentinean Chamber of Renewable Energy and the Ministry of Energy, 
as well as with international values (Argentina, 2023; Spain, 2023). In this way, the boundary between the 

Figure 9. Generic Camargo Intrinsic Cost vs. Emissions ( iU ) for  i jµ µ= .
Source: The authors.
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feasible and non-feasible zones forms a concave ‘U’. This has the same characteristic as the marginal cost curve 
and therefore shows that the intrinsic cost effectively models the marginal cost of the variable being analysed.

3.4.2. Infeasible region and introduction to a Computable General Equilibrium Model (CGEM)

Firstly, in this section, a feasible region is observed, which is delineated by the minimum desired efficiency 
of the proposed solution (Figure 10a, Figure 10b, Figure 11a and Figure 11b). Solutions within the infeasible 
range would imply less than the expected efficiency ( boundarytp ). The feasible region is defined by the set of 
curves for each exponential weight. The boundary between the feasible and infeasible regions is defined by 
the efficiency frontier or Pareto frontier of the maximum (Equation 36) and minimum (Equation 37) tolerable 
investment costs. In Case 1 (Supply Side Management optimisation), this boundary represents the efficiency 
frontier or Pareto frontier of the minimum tolerable investments (Equation 36 and Figure 10a). Similarly, in Case 
2 (Demand Side Management optimisation), the boundary ( boundaryU ) between the feasible and infeasible regions 
corresponds to the efficiency frontier or Pareto frontier of the maximum tolerable investments (Equation 37 and 
Figure 10b). Case 1 ( ) ( )( )0   1i jβ β= ∩ =  is associated with Supply Side Management Optimisation (Equation 36), 

while Case 2 (  0i jβ β= = ) is associated with Demand Side Management Optimisation (Equation 37). Recall that 
case 1 corresponds to a positive externality and therefore implies a subsidy, whereas case 2 corresponds to a 
negative externality and therefore implies a tax or a fine (Figure 11a and Figure 11b).

( )( ) ( ) ( )( )                , 0   1j boundary i j boundary i jU U tp tpµ µ β β≥ ∀ ≥ ∩ = ∩ = 	 (36)

( )( ) ( )                , 0j boundary i j boundary jU U tp tp iµ µ β β≤ ∀ ≥ ∩ = = 	 (37)

Secondly, it should be remembered that Equation 38 takes into account the sign resulting from the consideration 
of the two optimisation directions and the one corresponding to the subjective evaluation developed in Section 
3.2 (Generic Camargo Intrinsic Cost), Section 3.3.1. (Supply Side Management), Section 3.3.2. (Demand Side 
Management) and Section 3.3.3.

Figure 10. Investment Cost ( jU ) vs. Emissions ( iU ) with 1/j iEW EW= , 0p =  and the following situations: (a) Case 1 and (b) Case 2.
Source: The authors.



Production, 34, e20230091, 2024 | DOI: 10.1590/0103-6513.20230091 24/30

Equations 38 and 39 take into account the sign resulting from the consideration of the two optimisation 
directions and the one corresponding to the investment cost limit for the two cases: 1) Supply Side Management 
(Section 3.3.1.) and 2) Demand Side Management (Section 3.3.2.). Equation 38 and Equation 39 show the 
Generic Camargo Intrinsic Cost limits according to Case 1 (Equation 38) and Case 2 (Equation 39).

( ) ( ) (  )      i j boundary boundary i jGCIC GCIC tp tp β β≥ ∀ ≥ ∩ = 		  (38)

( ) ( ) ( ) ( )( )        0   1i j boundary boundary i jGCIC GCIC tp tp β β≤ ∀ ≥ ∩ = ∩ = 	 (39)

In this way, a feasible region is observed in relation to the GCIC curves, bounded by the minimum desired 
efficiency ( boundarytp ) of the proposed solution. The feasible region is determined by the set of curves for each 
exponential weight (Figure 11a and Figure 11b). In Case 1 (Supply Side Management optimisation), the boundary 
( boundaryGCIC ) between the feasible and infeasible regions corresponds to the efficiency frontier or Pareto frontier 
of the maximum tolerable investments (Equation 39 and Figure 11b). Similarly, in Case 2 (Demand Management 
Optimisation), this boundary represents the efficiency frontier or Pareto frontier of the maximum tolerable 
investments (Equation 38 and Figure 11a and Figure 11b).

Thirdly and additionally, a break-even point (see Figure 12a) of 20.311 Ton CO  EQ and 2.5 USD
MWh

 was obtained 

and the break-even zone obtained where Emissions ( iU ) are between  2 0.3 ;  0.311  Ton CO EQ
MWh

    and the Investment 
Cost ( jU ) are between 1.6;  3.4 USD

MWh
    (see Figure 12a and Figure 12b). This equilibrium analysis was only carried 

out for the case of the Hamacher T-Norm product, which was chosen as the least demanding and used as 
a reference point. Given the exhaustive nature and broad scope of the comparison with different T-norms, 
it was not considered practical to fully develop this analysis within this paper and therefore warrants further 
exploration in future studies.

Figure 11. Generic Camargo Intrinsic Cost vs. Emissions ( iU ) with 0p =  and the following situations: (a) 1/j iEW EW=   
and (b) i jµ µ= .

Source: The authors.
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Finally, these results show that fuzzy decision theory can delineate a zone and an equilibrium point depending 
on the hierarchy of agents (see Figure 12a and Figure 12b).

This novel methodology represents a significant advance in computable general equilibrium models, allowing 
the development of models that derive equilibrium supply and demand points from the hierarchy (and vice versa) 
with uncertainty (see Section 2.4). In particular, this can be achieved with variables with or without associated 
markets and with known or unknown prices, which is a notable advantage. Future work will deepen this analysis 
and proposal, including current t-norms and potential state-of-the-art advances. This boundary between the 
feasible and infeasible regions is then defined by the efficiency frontier (Equation 38 and Equation 39), or 
Pareto frontier, of the maximum feasible solution.

4. Conclusions

The current line of research has presented a methodology to solve the following challenges in the economic 
evaluation of optimal production chains, which were highlighted in the introduction and are still discussed in 
the state of the art (Camargo, 2019, 2021, 2022a, b, 2023; Camargo et al., 2018, 2023a, b): 1) The challenges 
of multidisciplinary or multi-objective optimisation in the presence of fundamental uncertainty. 2) The 

Figure 12. Feasible Region of equilibrium for Investment Cost vs. Emissions ( 0p = ): (a) Points of equilibrium and (b) Zones of 
equilibrium.

Source: The authors.
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complexity of mathematical modelling due to the previous point, especially in terms of metric compatibility 
(equality of units of measurement) of the optimal indices and their hierarchical evaluation. Thus, if one of the 
indices corresponds to an economic value and the other is a non-economic technical index, this implies an 
economic evaluation of this non-monetisable index, which may be unknown and not easy to obtain. 3) Due 
to the previous points, there is an inefficiency in determining the optimal economic valuation (price of 2CO  
and externality), especially when there are indices that cannot be monetised or are not subject to the laws of 
supply and demand on the markets. 4) Inadequate consideration of fundamental uncertainties in the current 
state of the art due to the difficulty or lack of consensus in the optimal economic valuation of non-monetisable 
indices of the corresponding externality (positive or negative). 5) The best use of the aforementioned artificial 
intelligence tools to obtain and evaluate optimal solutions in this context.

Based on the above five state-of-the-art problems, this novel methodology aimed to obtain the optimal 
economic valuation of emissions (carbon price) under uncertainty (Fuzzy Decision Making) and hierarchical 
variation (Analytic Hierarchy Process) within the Argentine production chain (Life Cycle Analysis), resulting in a 
novel model of market equilibrium. The originality aspects of this methodology included: 1) the development 
of a novel optimal economic (marginal) evaluation index called Generic Camargo Intrinsic Cost for three 
fuzzy intersection operators of Hamacher families of fuzzy intersection operators with changing hierarchy, 2) 
the determination of optimal graphical attribute efficiency points, regions and boundaries along with their 
optimal economic evaluation, and 3) the creation of a computable general equilibrium model with fundamental 
uncertainty. The research method involved the theoretical, practical and economic contribution and results 
(including mathematical and graphical analysis) of this methodology and its novel tools, which were developed, 
generalised and analysed.

These tools, improved, developed and combined by the present novel methodology, are based on bio-inspired 
algorithms, heuristics and metaheuristics for searching and solving bio-inspired problems and emulating human 
behaviour in making and weighing (hierarchical) decisions according to artificial intelligence tools to find the 
optimal economic evaluation.

Therefore, the following methodology was used (see Figure 2).
Firstly, a Life Cycle Assessment (LCA) was carried out, considering the material and fuel flow of the Argentine 

Production Chain (APC) through the following stages: resource extraction, material processing, manufacturing, 
construction, transportation and waste management (Figure 2). In this way, the parameters (including technical 
data) were mainly processed and the complete model was validated using information from public reports available 
in the database of the Ministry of Energy and Mines (Camargo, 2019, 2021, 2022a, b, 2023; Argentina, 2023; 
Camargo et al., 2023a, b). Two cases have been considered in this optimisation: Supply Side Management (SSM) 
and Demand Side Management (DSM). Supply Side Management (SSM) efficiency optimisation involved reducing 
emissions by investing in energy efficient improvements in the production chain or by changing consumption 
patterns with minimal investment. Demand Side Management (DSM) efficiency improvements involved reducing 
investment and emissions by implementing measures that encourage conservation.

Secondly, based on the Life Cycle Analysis (LCA) model, the efficiency index to be optimised (fuzzy 
intersection) was determined and the attributes to be evaluated (investment costs and 2CO  emissions) were 
defined. The decision maker (Figure 2) then evaluated the indices (emissions and investment costs) resulting 
from the Life Cycle Analysis and transformed them into the fuzzy domain, taking into account the upper and 
lower bounds (see Equation 1) obtained from the upper and lower limits of the analysed Life Cycle Analysis 
(  Up

mU  and Low
mU ). This methodology combined this model with fuzzy decision theory and the Analytic Hierarchy 

Process to obtain the fuzzy indices, which incorporate the upper and lower bounds obtained from the life 
cycle analysis, the hierarchical evaluation (exponential weights) and the type of fuzzy intersection operator 
to be used according to the p-coefficient used. The exponential weights (EW) represented the decision maker 
hierarchy (Supply and Demand Side Management) for the evaluated attributes (investment cost and emissions), 
influencing the optimal solution and consequently the economic valuation (carbon tax or carbon price) based 
on the assigned hierarchy.

Thirdly, to find the optimal solution, this methodology used fuzzy decision theory and analytic hierarchy 
process with artificial intelligence tools such as particle swarm optimisation metaheuristics. It provided optimal 
solutions for supply chain management and industrial processes. The values of objectives and constraints depended 
on the solution proposed by the Particle Swarm Optimisation (PSO) metaheuristic and the prioritisation proposed 
by the Analytic Hierarchy Process. In addition, the hierarchy (Analytic Hierarchy Process) and the upper and 
lower bounds (static) of these attributes were determined. From there, the evaluation of the indices was carried 
out, which also depended on the direction of improvement of the function (increase or decrease). The two 
cases (supply and demand management optimisation) were analysed for the reduction of environmental impacts 
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(emissions), where these cases were made according to the decision maker’s cases on emissions and the cost of 
the investment (carbon price). In this sense, this metaheuristic aimed to maximise both the fuzzy indices and 
their intersection, regardless of whether they were at maximum or minimum attribute values (investment cost 
and emissions). If the aim is to maximise the given indices then the value of the fuzzy upper limit ( )Up

mU ) will be 
sought to be reached. Conversely, if the aim is to minimise the indices then the value of the fuzzy lower limit 
( Low

mU ) will be sought to be reached (see Equation 1).
Fourthly, the Generic Camargo Intrinsic Cost that model the economic valuation (carbon price) of 2CO  emissions 

from the Argentinean production chain was obtained and compared, considering both Supply Side Management 
and Demand Side Management. It models the objective evaluation (based on maximum and minimum quality 
limits) and subjective evaluation (based on t-norms, acceptance level, hierarchy and uncertainty) through the 
Generic Camargo Intrinsic Cost Index and its methodology. This new index covers all these cases, without the 
need for a specific mathematical development for each of them, nor the use of different intrinsic cost indices 
depending on the case, which simplifies the methodology. In this way, Intrinsic Cost has been applied with 
different fuzzy operators in a generic new index: Algebraic, Generic and Particular Hamacher and Einstein Product.

Fifthly, from the four aspects mentioned above, the curves associated with the attributes analysed and Generic 
Camargo Intrinsic Cost and the efficiency frontiers separating the feasible and non-feasible areas are obtained. 
This resulted in a new computational model of market equilibrium in which the equilibrium points and zones 
were searched for and the marginal cost of equilibrium was obtained, as summarised below. Then theoretical, 
practical, and economic contributions of this methodology to the Argentinean production chain were presented 
through the introduction of a new market equilibrium model (Section 3.4.).

The main theoretical contribution the present methodology are the follows.

•	 The improvements obtained from the original proposal of the intrinsic cost index to the latest improvement 
of the present proposal are developed and analysed from a mathematical point of view. The original proposal 
was complex to implement even with two attributes, resulting in a large equation that was difficult to use and 
analyse. Therefore, improvements were made based on the Ceteris Paribus clause and by means of Hamacher’s 
t-norm product families this expression was generalised for the four types of fuzzy intersection t-norms analysed.

•	 In this way, a general expression of intrinsic costs in cases of fundamental uncertainty (General Camargo Intrinsic 
Cost) has been obtained, which takes into account the objective valuation (incremental costs from the limits 
of the fuzzy function), the subjective valuation (acceptance levels or fuzzy preference functions of the indices 
studied) and the priorities (exponential weightings) of these indices studied (investment costs and emissions) 
from the decision maker’s case: 1) Supply Side Management and 2) Demand Side Management. This is in line 
with the life cycle analysis carried out on the material and fuel flows for the five sectors studied: extraction, 
processing, manufacturing, construction and transport. In this way, the results obtained verified that the 
variants of the Camargo General Intrinsic Cost Index take into account the relative evaluation of the hierarchy 
(exponential weights) and the ranking according to the AHP, the objective evaluation of the non-monetisable 
attribute (differential cost) and its subjective evaluation (hierarchy of the decision maker). Through the novel 
improvements made to the proposed intrinsic cost index and the cases analysed, its relationship with economic 
theories has been demonstrated by obtaining the optimal (Particle Swarm Optimisation) supply and demand 
curves and a model for obtaining and analysing market equilibrium, which will be extended in the future. 
This is a novel way of incorporating fundamental uncertainty, objective and subjective economic evaluation 
of non-monetisable indices and priority criteria, for the three types of t-norm intersection of product t-norm. 
Future work would deepen this analysis and proposal, including current t-norms and potential state-of-the-art 
advances.

The main results of this methodology and its analysis are the follows (see Figure 3 to Figure 12).

•	 Graphically (see Figure  8, Figure  9 and Figure  11), it has been demonstrated that the slope of the Generic 
Camargo Intrinsic Cost curve is positive and therefore any increase in emissions will be penalised (demand side 
management) or incentivised (supply side management). It was observed that the slope of the generic Camargo 
intrinsic cost was inversely related to the factor p, which defines the family of t-norm Hamacher products. That 
is, when 0p =  (particular Hamacher’s product), these intrinsic cost curves have high slopes, while for high values 
of p ( 2p =  or Einstein’s product), the intrinsic cost curve (Generic Camargo Intrinsic Cost) has low slopes. This is 
useful to know when defining the externality; if low values of p are chosen, the amount of the penalty or subsidy 
may vary significantly, and vice versa for high values of p. These t-norms can be used to adjust the slope of the 
supply-side management and demand-side management curves, as well as the slope of the intrinsic cost. In this 
way, the requirement for the penalty cost of emissions (carbon price) can be regulated.
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•	 The graph of the investment costs and emissions (attributes) was examined in relation to the Generic Camargo 

Intrinsic Costs. The life cycle analysis yielded an emission interval of 2Ton CO  EQ0.30;0.39
Mwh

    and the investment 

costs yielded an emission interval of USD1.5;5
Mwh

   , the limits of which correspond to the fuzzy limits (see Figure 1 

and Figure 3 to Figure 12). The results were logical in both cases (Argentinean production chain and society).

•	 The interval for the Generic Camargo Intrinsic Cost (GCIC) was 
2

0;500
  
USD

Ton CO EQ
   , reaching 

2
500

  
USD

Ton CO EQ
 in 

extreme solutions, while historical carbon bond prices fall within the interval 
2

20;100
  
USD

Ton CO EQ
    (see Figure 8, 

Figure 9 and Figure 11). The prices obtained were therefore in line with international values. As a result, the values 
obtained in the indices were in line with national and international studies such as (Camargo, 2019, 2021, 2022a, 
b, 2023; Argentina, 2023; Spain, 2023; Camargo et al., 2023a, b). The intrinsic cost proved to be a reliable indicator 
of energy efficiency and sustainability, as it includes both economic costs and environmental costs or benefits 
( 2CO  emissions). By improving the mathematical equation of the intrinsic cost index, this work has succeeded in 
extending the definition to other types of t-norms (continuous and differentiable).

•	 This model allowed for the determination of the break-even point of estuary prospects, based on supply and demand 
curves. Moreover, it demonstrated that the efficiency frontier of intrinsic costs was associated with marginal (opportunity) 
costs. This introduction laid the groundwork for future models enabling objective and subjective valuation of both 
positive and negative externalities, subject to fundamental uncertainty, in line with the efficiency frontier. The 
significance of these implications was emphasised, highlighting the practical implications of the present proposal. 
Additionally, the analysis was enhanced by examining the exponential weights variations and their implications 
graphically, further contributing to the comprehensive understanding of the proposed theoretical development. Overall, 
this study compiled and improved upon existing knowledge, yielding promising and insightful results.

•	 In this way, feasible and infeasible zones delimited by maximum and minimum desired efficiency curves were obtained 

with equilibrium zones and break-even points. Then, a break-even point (see Figure 12a) of 
 2 0.31 Ton CO EQ
MWh

 and 

2.5 USD
MWh

 was obtained and the break-even zone obtained where Emissions ( iU ) were between  2 0.3 ;  0.31  Ton CO EQ
MWh

    

and the Investment Cost ( jU ) were between 1.6;  3.4 USD
MWh

    (see Figure 12b). Through the newly established market 

equilibrium model, additional equilibrium points were obtained for the established priority criteria (exponential weights) 
based on the hierarchy of cases analysed. These points delineated a range of potential outcomes, similar to producer 
and consumer surplus in economics, illustrating the applicability of the current proposal to market equilibrium analysis.

•	 When this analysis was carried out, an interesting result was obtained (see Figure 9 and Figure 11). Firstly, increasing 
and decreasing intrinsic cost curves were obtained (see Equation 29 and Equation 30), and secondly, the boundary 
between the feasible and non-feasible zones formed a concave ‘U’. This was reminiscent of the marginal cost curve, 
which has the same characteristic, and therefore showed that the intrinsic cost effectively modelled the marginal 

cost of the variable being analysed. The curve had a minimum at 2  0.36 Ton CO EQ
MWh

 and 
2

50 
Ton CO  EQ  

USD , which was 

in line with current carbon credit prices, although not feasible according to the analysis in the following section. 
All solutions that were in the infeasible range (determined by the set of curves for each exponential weight that 
contained it) would have required less than the expected efficiency ( boundarytp ), as explained in Section 3.4.2.

•	 The full model has been validated and calibrated using publicly available reports, and all these results calculated 
by Particle Swarm Optimisation are logical, consistent and correct with the data collected, and they are in line 
with the costs determined by the Argentinean Chamber of Renewable Energy and the Ministry of Energy and 
international values (Argentina, 2023; Spain, 2023).

The main practical and economical contribution of this methodology and its analysis are the follows.

•	Given the exhaustive nature and broad scope of the comparison with various T-norms, it was considered impractical 
to fully develop it within this paper and therefore warranted further exploration in future studies. The results 
showed that fuzzy decision theory could delineate a zone and an equilibrium point depending on the hierarchy 
of the decision maker. This represented a significant advance in computable general equilibrium models, allowing 
the development of models that infer supply and demand equilibrium points from exponential weight (and vice 
versa). In particular, this could be achieved with variables with or without associated markets and with known or 
unknown prices, which was a notable advantage.
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•	 In this way, it was then established that, from the theory of fuzzy decision making, it is possible to obtain an 
equilibrium zone and an equilibrium point that depend on the hierarchy of the decision maker. All these solutions 
are the infeasible region (defined by the set of curves for each exponential weight that make up the infeasible 
region) that require the minimum or maximum expected efficiency. This was a major contribution to general 
computational equilibrium theory, as it allowed the development of models that allowed the equilibrium point 
of supply and demand to be obtained from exponential weights (and vice versa). It is called Computable General 
Equilibrium (CGE) model. More importantly, this would be done with variables with or without an associated 
market, with known or unknown price, which is a great advantage. In future work, this analysis and proposal will 
be carried out and deepened with the current t-norms (and another possible state of the art).

•	 The results are therefore coherent, logical, satisfactory and promising and they can be applied to other areas of 
the productive sector, using other indices of interest. Therefore, this model can be perfectly used for economic 
models of the production chain, and this has the advantage of taking into account the fundamental uncertainty, 
since it works with fuzzy logic, and therefore it is a good proposal given the difficulty of modelling uncertainty 
in economic models. Future economic works will present and deepen the present proposal in this respect.

This work makes a significant contribution to the Argentinean production chain, providing tools for improving 
its efficiency and contributing to future models for analysing and predicting changes in its behaviour. Thus, this 
methodology has the advantage of being flexible (applicable to any problem), relatively easy to apply to complex 
problems, and incorporating metaheuristics and hierarchisation for multi-objective optimisation with fundamental 
uncertainty. In order to explore novel incentive and penalty mechanisms to improve energy efficiency and the 
carbon trading market, it was necessary to assess the suitability of the tools compared in this paper. Future work 
will further compare this research and apply mechanisms based on the Computable General Equilibrium (CGE) 
model of the Argentine supply chain and this methodology, with the aim of knowing the market price of carbon 
in the supply chain for each and every t-norm. In addition, the procedure to determine the price of energy 
investment projects based on these proposed indices will be applied. Mechanisms will also be implemented to 
calculate the economic amount of the penalty or subsidy for the externality produced. Innovative environmental 
valuation mechanisms have been developed in this work. With this carbon price, the regulator will provide an 
economic incentive for the company to make the relevant investments and to continuously search for energy 
efficiency. This is important in order to reach a compromise between the possibilities of the production chain 
and the needs of the users, based on the valuation of externalities. It will facilitate the development of carbon 
credit valuation mechanisms that take into account the specific environmental challenges, level of development, 
social inequalities, needs and hierarchy of each country.
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