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Abstract

Paper aims: This study seeks to investigate the accuracy of machine learning algorithms for estimation of the effort 
required for software development in the manufacturing sector to identify the most effective algorithms according to the 
nature and complexity of the data and the number of available attributes.

Originality: This work distinguishes itself from other studies in the field of effort prediction by utilizing a data repository 
that consists exclusively of projects from the manufacturing sector. This approach ensures that the specific characteristics 
of manufacturing projects are reflected in the predictions, addressing a gap in the existing literature. Another notable 
contribution of this study is the comparative analysis of various machine learning algorithms assessed under different 
dimensionality scenarios (three and five variables). Although this factor is crucial for enhancing effort estimation accuracy, 
it has received limited attention in the literature.

Research method: The investigated techniques in this work were (i) Support Vector Regression, (ii) Gradient Boosting 
Machines (GBM), (iii) eXtreme Gradient Boosting (XGBoost), (iv) Random Forest (RF), (v) Extreme Learning Machine (ELM); 
and (vi) Linear Regression (LR). Performance measures such as Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), and Coefficient of Determination (R2) were used to compare the results achieved by each model, considering a 
dataset of 230 records originating from various countries.

Main findings: The comparison among machine learning models revealed significant performance variations depending 
on the number of variables and the evaluation metrics adopted. GBM stood out for its robustness in complex scenarios, 
while SVR achieved the lowest mean absolute error. ELM, in turn, proved effective with fewer variables but showed 
sensitivity to outliers and less stability in more complex contexts. Among all the techniques evaluated, XGB yielded the 
worst performance across all parameters.

Implications for theory and practice: This study contributes by applying these models to the manufacturing sector and 
comparing scenarios with three and five variables. The results support a more informed selection of models based on 
project complexity and data dimensionality. The more research conducted in this area, the stronger the theoretical and 
practical conclusions can be drawn.
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1. Introduction

In software development, accurately estimating the effort required early in a project is essential for its success 
(Kassaymeh et al., 2024; Lavingia et al., 2024; Van Hai et al., 2022a). Software Development Effort Estimation 
(SDEE) involves forecasting the work and time needed to deliver a system within set constraints (López-Martín, 
2022). Inaccurate estimates can disrupt later planning stages, reduce product quality, and lead to financial 
losses, especially when organizational needs are not met (Kaushik et al., 2020; Kumar et al., 2020).

The increasing availability of historical project data and the growing need for accurate forecasting in various 
scientific domains have driven the development of robust and efficient techniques capable of modeling stochastic 
dependencies between past and future observations (Bontempi et al., 2013).

Although similar techniques are frequently used in the literature, results often vary significantly. In the Artificial 
Intelligence field, for instance, Jiang et al. (2019) highlighted the effectiveness of Artificial Neural Networks. 
However, other studies have noted drawbacks such as slow convergence, low accuracy, and high sensitivity to 
initial parameters, often requiring metaheuristic algorithms to improve their performance (Kassaymeh et al., 
2024). These issues contribute to increased complexity and longer implementation times.

In the context of Machine Learning (ML), various authors (Kassaymeh et al., 2024; Lavingia et al., 2024; Varshini 
& Kumari, 2024; Al-Betar et al., 2023; Rahman et al., 2023; Rao et al., 2024; Sharma & Vijayvargiya, 2020) have 
reported promising results in software effort estimation. Rankovic et al. (2021) emphasize that ML techniques 
are effective for SDEE due to their ability to learn from data with minimal human intervention. Nevertheless, 
there is still no consensus on the best ML method, as no single approach has proven to be universally optimal.

A review of the related literature also reveals a noticeable lack of studies specifically focused on SDEE in 
the manufacturing sector, which constitutes the central theme of this research. Moreover, many authors do 
not specify the types of variables used in model construction, hindering comparative analysis and limiting the 
applicability of results to other studies. It was further observed that most research efforts are conducted within 
the scope of specific systems or organizations, thereby restricting the generalizability of their findings.

This study aims to estimate software development effort in the manufacturing sector using international 
data from the ISBSG repository. A comparative analysis is performed on the performance of various machine 
learning models namely GBM, SVR, ELM, RF, LR, and XGBoost, using two variable sets (with three and five 
attributes) to evaluate the effect of dimensionality. Model performance is assessed based on R2, RMSE, and 
MAE. The goal is to identify the most effective models in relation to data complexity and variable availability, 
supporting more accurate and context-sensitive effort estimations.

The objective of this study is to estimate the effort required for software projects in the manufacturing sector, 
using data from various countries available in the ISBSG repository. In this respect, a comparative analysis is 
conducted on the performance of different machine learning models in predicting software effort, considering 
two sets of variables (with three and five attributes) to assess the impact of dimensionality. The models analyzed 
include GBM, SVR, ELM, RF, LR, and XGBoost, and their performances are compared using R2, RMSE, and MAE 
criteria. The study aims to identify the most effective models according to data complexity and the number of 
available variables, contributing to more accurate and context-aware effort estimations.

This research is justified by its focus on the manufacturing sector, which allows for integrating domain-
specific characteristics into effort estimation. Using an international database enhances the representativeness 
of the results, making the predictions more accurate and generalizable. Additionally, the study compares 
different machine learning models, analyzing the impact of dimensionality (three and five variables) on predictive 
performance — an approach that has been underexplored in the literature. The results provide valuable insights 
for selecting algorithms best suited to the data complexity and application context.

The scientific contributions are as follows:

-	 Software effort estimation tailored explicitly for the manufacturing sector, integrating the unique characteristics 
of this domain and contributing to more realistic and context-aligned estimates for industrial applications.

-	 Utilization of an international database (ISBSG) comprising projects from various countries, enabling a comprehensive 
and representative analysis of different software development practices and realities.

-	 Comparative evaluation of multiple machine learning models, including SVR, GBM, XGBoost, RF, ELM, and LR, 
based on performance metrics such as R2, RMSE, and MAE.

-	 Investigation of the impact of data dimensionality on model performance, with tests conducted in scenarios with 
three and five variables, offering insights into the trade-off between model simplicity and accuracy.
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-	 Practical contribution to selecting predictive models in effort estimation, providing guidelines based on data nature 
and organizational objectives.

The remainder of this article is structured as follows: Section 2 reviews related studies in the context of software 
effort estimation using machine learning. Section 3 presents the dataset containing statistical information, the 
algorithms used, the performance metrics, and the proposed framework. Section 4 discusses the results, while 
Section 5 offers the conclusions.

2. Methodology

2.1. Information about the data repository

This study primarily relied on a database provided by the International Software Benchmarking Standards 
Group (ISBSG). The July 2022 version of the repository was used in this research. The repository includes 
contributions from multiple countries, with the largest being Spain (19.7%), Switzerland (19.5%), the United 
States (19.1%), Australia (7.6%), and Japan (7.5%). Brazil ranks twelfth, contributing 1.4% of the total data. 
Other contributing countries include Finland, China, France, Canada, India and Denmark. Considering all selected 
characteristics and after cleaning the dataset, which involved removing non-existent values and outliers, the 
resulting data sample consisted of 230 projects.

2.2. Dependent and independent variables predictor variables

The variable ‘normalized effort,’ measured in hours, was defined as the dependent (output) of the model. 
This variable encompasses all phases of the software development lifecycle, including planning, specification, 
design, construction, testing, and implementation.

The first predictor defined was ‘relative size,’ which corresponds to the functional size of the software, 
measured using the Functional Size Measurement (FSM) Method. This method includes approaches such as 
COSMIC, FiSMA, IFPUG 4+, IFPUG old, LOC, Mark II, and NESMA.

The second predictor defined was ‘team size.’ This variable represents the number of individuals who worked 
at any point during the project development.

The third predictor variable defined was ‘development platform’, which specifies the main development 
platform (as determined by the operating system used). Each project is classified as: PC, Mid Range (MR), Main 
Frame (MF), or Multiplatform (Multi). The fourth predictor variable is ‘language type’. This variable defines the 
type of programming language used in the project, namely: 3GL, 4GL, and Application Generator (ApG).

2.3. Regression methods for effort prediction

2.3.1. Support Vector Regression

Support Vector Regression (SVR) identifies support vectors near a hyperplane to maximize the margin based 
on a threshold from the target value. It uses kernel functions to handle non-linear problems, with a linear kernel 
selected in this study (Box et al., 2015).

The forecasting is obtained through the linear regression stated as,
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in which, y is the vector of outputs, iϖ  is a weight, K( ix , jx ) is a kernel function, equivalent to an inner product 
between observations ( ix , jx ) in some feature space, b is the bias parameter, and n is the length of the time 
series. To determine the parameters estimation, an optimization problem is formulated as follows:
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where C is a penalty factor, is a loss function, ξ  and *ξ  are two lack variables. There are several kernel functions 
which can be employed, and are described as,
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Linear: ( , ) ' ,i j i jk x x x x= 		   (7)

Polynomial: ( )( , ) 1 ´ ,
p

i j i jk x x x x= + 		   (8)

where δ  is the width of the kernel function.

2.3.2. Gradient Boosting Machines

Gradient Boosting Machines (GBM) is an ML technique renowned for modeling complex regression and 
classification problems, including software effort estimation.The step by step of GBM is described as follows:

Let { } 1, n
i i iD x y == be the adopted dataset, and a loss function computed as follows: (for regression 

problems)
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where iy  is the vector of inputs, F(x) is the function related to the model used to obtain the predicted values. 
Initialize a model with a constant value
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where the γ is the initial predicted value. In the context of regression problems, the argmin over γ means that it 
is need to find γ values which minimizes the loss function L, such as 0F (x) = 0. In this context, mathematically,
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Since m=1 to M,

A) Compute the pseudo-residual for i-th output value in the regression tree m, that is,
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B) Fit a regression tree for the ,i mr  residuals and creates a terminal region ,j mR  for all j = 1, . . ., MJ . In other 
words, ,j mR  represents the j-th leaves of the m-th tree;
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C) For the j = 1, . . ., MJ compute the
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where in this step, for each j-th leaves, the predicted value is given by Equation 14. In fact, for each leaves, the 
predicted value is the average, as observed in Equation 12;

D) Update the mF (x) value (new prediction for the output) for the m-th regression tree, that is,
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where ( )1mF x−  are the previous prediction, η is the learning rate used to reduces the sensitivity of predictions 
regarding the individual outputs as well as reduces the effect of each tree on the new prediction. Finally, the 
summation represents the addition of new predicted values to the previous γ value.

The next step is compute the final prediction given by ˆ y  = MF  (x) (Ribeiro, 2021).

2.3.3. eXtreme Gradient Boosting

eXtreme Gradient Boosting (XGBoost) was developed by Chen & Guestrin (2016), incorporating the boosting 
model proposed by Friedman (2001). XGBoost is a tree-based ML algorithm known for its efficiency, speed, 
and performance (Jabeur et al., 2024).

The predicted output is given by a sum of individual predictions and computed as following:
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where K is the number of trees, ˆiy  is the i-th forecast output and f is a function in the space F. The objective 
function to be optimized (minimization problem) in the XGBoost approach is represented by:
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in which, l is the a differentiable convex loss function that computes the difference between the forecast output 
ˆiy  and real value  usually represented by mean squared error. The Ω( kf ) is the regularization term, γ is a 
threshold for the gain, and λ is the regularization on leaf weights. Considering the predicted value in the s-th 

step denoted by ( )ˆ s
iy , the objective function described in Equation 17 can be rewritten as follows:
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where taking into account the Taylor expansion of the mean squared error up to the second order,
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By reformulating the Equation 18, the objective function at step s is computed as follows:
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where jI  is the set of indices of observations assigned to the j-th leaf of the tree. In the aforementioned equation, 
the first term of Equation 20 is quadratic, and the most suitable jw  for a give function q(x) is computed as 
follows:
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Finally, the objective function can be rewritten as following:
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where the objective function depends on ig  and ih  (Ribeiro, 2021).

2.3.4. Random Forest (RF)

Random Forest (RF) is a machine learning method that uses an ensemble of decision trees to improve prediction 
accuracy and reduce overfitting. Each tree is built using a random sample of the data and a random selection 
of variables, promoting diversity among the trees. The final prediction is made by averaging individual tree 
predictions for regression or using majority voting for classification. RF is popular for its robustness, accuracy, 
and capacity to handle large datasets and noisy features (Breiman, 2001).

Mathematically, the final prediction achieved by RF can be computed as follows, where ŷ is the predicted 
output, m is the number of trees, and ( ) kf x represents the predictions of k-th according the input vector x 
(Ribeiro, 2021).
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m =
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2.3.5. Extreme Learning Machine (ELM)

The Extreme Learning Machine (ELM) is a supervised learning method for single-hidden-layer feedforward 
neural networks (SLFN), introduced by Huang et al. (2006). This eliminates the need for iterative optimization, 
significantly reducing training time (Huang et al., 2011).

Mathematically, given a time series of n observations and m inputs, D = {( ix , ix )| ix  ∈ mR , iy  ∈ R}, where 
x is the vector of inputs y is the vector of outputs, an ensemble model uses an aggregation function G that 
aggregates the predictions of K base model 1f (x), . . ., kf (x) towards predicting a single forecasting model as 
follows:

( )1ˆ ( ( ) )f ky G x f x= 		  (24)

where ˆiy  is the forecasting value of i-th observation of time series in specific time window. Overall, the success 
of ensemble models is related to the diversity of their base models (Ribeiro, 2021)

2.3.6. Linear Regression (LR)

Linear regression is one of the simplest and most widely used statistical models for understanding the 
relationship between a dependent variable and one or more independent variables (Freedman, 2009).

Mathematically, the linear regression model can be expressed as:

2 20 1   1 p pxy x xβ β β εβ+ + += + 		  (25)

where y is the dependent variable, 1x , 2x ,..., px  are the independent variables, 0β  is the intercept, 1β ,..., pβ  are 
the coefficients, and ε is the error term. The coefficients are estimated using the least squares criterion, which 
minimizes the residual sum of squares:
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RSS = ( )
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2.3.7. Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error (MAPE) is a widely used metric for evaluating the accuracy of forecasting 
and regression models. It measures the average absolute difference between predicted and actual values, expressed 
as a percentage of the actual values (Hyndman & Koehler, 2006). Its formula is given by Equation 27

MAPE = 
1

ˆ100% n t t
t t

y y
n y=

−∑ 		  (27)

where n is the number of observations, ty  is the actual value at time t and ˆty  is the predicted value at time t.

2.4. Performance measures

No single performance measure can fully evaluate the performance of an algorithm; therefore, this study 
utilized three evaluation parameters: RMSE, MAE, and R2.

By definition, RMSE is the average distance of a data point from the fitted line, measured along a vertical 
line, and can be computed using Equation 28. (Chou et al., 2012).

RMSE = 
( )

1
  ²

 

n
i ii

A Ã

n
=

−∑ 		  (28)

According to Al Betar et al. (2023), MAE is a good choice when outliers are not a major concern, as it is a 
less sensitive measure of accuracy. MAE is given by Equation 29.

MAE = 
1

1   
n

i ii
A Ã

n =
−∑ 		  (29)

R2, or the coefficient of determination, is a statistical measure indicating the proportion of the variance in the 
dependent variable that is explained by the regression model. In simpler terms, R2 measures how well the data 
fit the regression model (Myers et al., 2012). Its formula is given by Equation 30.
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In Equations 27, 28 and 29, Ã is the actual value, A is the predicted value, and n is the number of data samples.

2.5. K-fold cross-validation

To evaluate the performance of a model more robustly and reliably, k-fold cross-validation with k = 5 was 
used. In this process, the dataset is initially randomly divided into approximately equal-sized subsets, or folds, each 
containing one-fifth of the data. Subsequently, the iteration among the folds begins, with one fold used for testing 
(validation) and the remaining four folds used for training the model. The model is trained on the four training folds 
and evaluated on the test fold, generating a performance measure for that specific iteration of cross-validation. 
This process is repeated five times, with each fold used once as the test set and the others as the training set.

2.6. Proposed framework

The methodology starts with acquiring data from the International ISBSG repository, followed by a data 
cleaning process to ensure dataset quality and consistency. Then, multiple predictive models, including SVR, 
ELM, GBM, RF, XGBoost, and LR, are applied, with each model undergoing a 5-fold cross-validation for robust 
performance evaluation.

After training and testing the models, performance metrics like RMSE, MAE, and R2 are calculated. The observed 
versus predicted values are compared to assess accuracy both visually and statistically. A T-test is performed to 
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statistically compare the techniques and identify significant differences. Additionally, the importance of each 
input variable is calculated to assess its influence on predictions.

Finally, the results are compared to identify the most effective model and draw insights from the findings. 
This process is visually presented in Figure 1.

3. Results and discussions

In this section, the results of the SVR, ELM, RF, XGB, GBM, and LR models are presented for the performance 
metrics RMSE, MAE, and R2, along with the observed versus predicted values, a comparison of the techniques 
using the T-test, and the importance of the variables.

3.1. Statistical analysis of the data

Table 1 presents a statistical summary for the numerical variables: effort, relative size, and team size. The effort 
variable, with a mean of 6525.54 and a median of 3926, shows high variability, suggesting that while most projects 
require modest effort, a few large-scale projects significantly raise the average. Similarly, the relative size variable, with 
a standard deviation of 910.66, indicates substantial dispersion, with most projects falling between the 1st quartile 
(170.75) and 3rd quartile (1041.25), but larger projects also exist. The team size variable has a median of 6 members, 

Table 1. Descriptive statistics for numerical variables.

Effort Relative size Team size

Mean 6525.5445 760.4739 8.1260

Median 3926 456 6

Standard Deviation 10410.6598 910.6642 11.4256

Variance 108855121.1953 832930.7744 131.115

Minimum 41 2 1

Maximum 109271 7599 100

Q1 (1st quartile) 1316 170.75 4

Q3 (3rd quartile) 7567.375 1041.25 6

Figure 1. Proposed framework.
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with most projects involving small teams of 4 to 6 members. The presence of extreme values in effort and relative size 
highlights the need for robust modeling techniques to manage variability without being overly affected by outliers.

Figure 2 shows box-plots for effort, team size, and functional size, revealing positively skewed distributions 
with most data concentrated at lower values. Outliers indicate exceptional cases of high effort, large teams, 
and large functional sizes. The medians are near the lower limits of the boxes, suggesting that most projects 
have modest effort, team size, and functional size. While the overall dispersion is moderate, the extreme values 
highlight the need for careful consideration of outliers in the analysis.

The categorical variables used in this study are development platform and language type. Figure 3 presents the 
analysis of the development platform variable, showing that most projects are developed in MF environments, which 

Figure 2. Graphical analysis of numerical variables.

account for 62% of the total. PC and Multi environments represent 17% and 16% of projects, respectively, while 
MR platforms make up only 5%. This highlights the dominance of large-scale environments in the analyzed projects.

Regarding language type, there is a balance between third-generation languages (3GL), which account for 
49% of cases, and fourth-generation languages (4GL), which represent 44%. Languages categorized as ApG 
are present in 7% of projects. These results suggest that while traditional languages like Java and C dominate, 
higher-level abstraction languages like SQL also play a significant role.

In conclusion, the data reveals that most projects are concentrated in MF environments and predominantly 
use third-generation languages.

3.2. Predictive performance of the models using RMSE, MAE, and R2

3.2.1. RMSE

The RMSE measures the dispersion of prediction errors and provides an idea of the magnitude of errors 
that the model is making in units of the dependent variable. In other words, the lower the RMSE, the better 
the model’s performance in fitting the data.
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The analysis of the results, presented in Tables 2 and 3 and Figure 4, showed that the performance of effort 
prediction models for software projects varied according to the number of variables used. With three variables, 
the ELM model achieved the lowest root mean square error (RMSE = 5648.579), indicating higher accuracy in 
this simpler scenario. However, when the number of variables increased to five, ELM was outperformed, with 
the GBM model delivering the best result (RMSE = 5824.245), closely followed by SVR (RMSE = 5848.167). 
These findings suggest that GBM has greater robustness and adaptability to increasing data complexity, while 
ELM performs better in lower-dimensional settings. SVR, in turn, showed sensitivity to the amount of available 

Figure 3. Frequency of qualitative variables.

Table 2. Statistical indicators for each of the models throughout the cross-validation task based on RMSE for three variables.

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVR 2637.915 2878.900 6439.316 6228.620 7207.870 11979.10

ELM 2720.080 3185.886 5250.637 5648.579 6149.776 10936.51

RF 4482.945 4702.924 6468.849 7229.131 9326.421 11164.52

XGB 6438.246 6640.801 10960.936 9477.823 11566.585 11782.55

GBM 2753.988 3876.674 4796.566 5880.556 6529.052 11446.50

RL 2560.465 3990.975 5483.606 6088.965 5841.733 12568.04

Table 3. Statistical indicators for each of the models throughout the cross-validation task based on RMSE for five variables.

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVR 2855.23 3639.305 4776.081 5848.167 5290.373 12679.85

ELM 3861.556 5092.513 5947.36 6449.51 6225.651 11120.47

RF 2951.21 4284.957 4518.134 6000.256 6130.342 12116.64

XGB 2970.957 6608.922 11141.68 9935.107 11504.18 17449.8

GBM 3480.321 3579.7 3680.717 5824.245 5548.991 12831.5

RL 3421.44 5728.558 6651.503 7012.444 6882.397 12378.32
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information, with a significant improvement in performance as more variables were included. Therefore, 
selecting the most appropriate model should consider not only error metrics but also the quantity and quality 
of variables in the dataset.

3.2.2. MAE

Similar to RMSE, lower MAE values indicate better model fit. Based on MAE analysis, SVR achieved the best 
performance in both scenarios, three and five input variables, with the lowest mean absolute errors (2837.984 and 
2727.108, respectively). This suggests SVR’s consistency and accuracy, particularly as MAE is less sensitive to 
outliers than RMSE. GBM ranked second with three variables (MAE = 2901.099), while RF held that position 
with five. The modest reduction in MAE with more input variables indicates a slight benefit from additional 
information. Overall, SVR demonstrated strong generalization and low average deviation, whereas GBM showed 
robust performance across metrics. These findings, summarized in Tables 4 and 5 and Figure 5, highlight the 
complementary value of using both RMSE and MAE for a well-rounded evaluation.

Figure 4. Performance graph of models according to RMSE for three and five variables.

Table 4. Statistical indicators for each of the models throughout the cross-validation task based on MAE for three variables.

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVR 1708.006 1800.635 3269.473 2837.984 3560.475 3851.329

ELM 2019.973 2286.110 2827.652 2918.060 3122.904 4333.661

RF 2593.227 2594.689 2926.842 3194.971 3425.342 4434.755

XGB 3022.544 3407.728 3532.120 3764.246 4219.320 4639.516

GBM 1821.312 2331.341 2524.024 2901.099 3254.219 4574.600

RL 18840.66 2447.539 2609.389 2914.21 2945.598 4684.457

Table 5. Statistical indicators for each of the models throughout the cross-validation task based on MAE for five variables.

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVR 1839.172 1977.642 2644.129 2727.108 2654.224 4520.372

ELM 2921.944 3897.94 3899.43 3762.313 4038.162 4054.09

RF 1934.975 2151.273 2618.03 2770.69 2995.199 4153.972

XGB 1805.435 3657.887 3967.571 4029.136 4200.891 6513.898

GBM 2212.77 2282.432 2482.883 2926.039 2987.985 4664.126

RL 2362.44 2712.319 3224.077 3199.084 3721.514 3975.069
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3.2.3. R2

R2 values range from 0 to 1 and indicate how well predicted values align with observed data, with values 
closer to 1 reflecting better model accuracy. When using three input variables, ELM achieved the highest 
R2 (0.7059), explaining approximately 70.6% of the variance, followed by SVR (0.6670) and LR (0.6557). In 
contrast, with five variables, GBM performed best (R2 = 0.7483), followed by RF (0.7220) and SVR (0.6422). 
These results suggest that ELM excels in lower-dimensional scenarios, GBM adapts well to higher-dimensional 
data, and SVR, while not achieving the highest R2, shows consistent generalization and strong performance in 
MAE. Together, the metrics highlight the trade-offs between overall fit and error minimization. The complete 
results are shown in Tables 6 and 7 and Figure 6.

Figure 5. Performance graph of models according to MAE for three and five variables.

Table 6. Statistical indicators for each of the models throughout the cross-validation task based on R2 for three variables.

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVR 0.5272 0.5816 0.6375 0.6670 0.7389 0.8499

ELM 0.5626 0.5877 0.6462 0.7059 0.8381 0.8950

RF 0.3650 0.4829 0.6416 0.5978 0.7010 0.7985

XGB 0.3810 0.4214 0.5551 0.5278 0.5577 0.7237

GBM 0.4420 0.5379 0.7170 0.6410 0.7580 0.7699

RL 0.4253 0.4835 0.6205 0.6557 0.8664 0.8829

Table 7. Statistical indicators for each of the models throughout the cross-validation task based on R2 for five variables.

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVR 0.3085 0.5649 0.7060 0.6422 0.7857 0.8459

ELM 0.4234 0.4675 0.6813 0.6276 0.7452 0.8158

RF 0.5767 0.6712 0.7103 0.7228 0.7593 0.8962

XGB 0.3702 0.3706 0.5054 0.5294 0.6947 0.7059

GBM 0.5939 0.7024 0.7581 0.7483 0.8197 0.8383

RL 0.4090 0.4847 0.6350 0.6351 0.7293 0.8716
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3.2.4. MAPE

MAPE assesses model performance by expressing prediction errors as percentages. With three input variables, 
ELM recorded the highest MAPE, indicating poor accuracy, while tree-based models, GBM, RF, and XGBoost, 
performed significantly better, with RF and XGBoost achieving the lowest and most stable errors. With five 
variables, most models improved, and XGBoost slightly outperformed the others, while ELM continued to exhibit 
high MAPE, reinforcing its limited generalization with increased dimensionality. Overall, tree-based ensemble 
models (especially RF and XGBoost) proved more effective in minimizing relative error. SVR and LR showed 
moderate results but were consistently outperformed by ensemble approaches. These outcomes are detailed in 
Tables 8 and 9 and illustrated in Figure 7.

Figure 6. Performance graph of models according to R2 for three and six variables.

Table 8. Statistical indicators for each of the models throughout the cross-validation task based on R2 for three variables.

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVR 6.08 9.62 14.78 13.71 18.04 20.05

ELM 15.55 20.89 39.42 35.28 49.57 50.96

RF 4.82 6.76 8.61 9.80 9.96 18.83

XGB 6.78 7.59 7.73 9.61 9.63 16.34

GBM 8.81 9.22 9.91 10.77 11.97 13.95

RL 10.37 15.79 16.35 19.27 23.27 30.56

Table 9. Statistical indicators for each of the models throughout the cross-validation task based on R2 for five variables.

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVR 8.14 8.86 9.23 13.68 10.84 31.33

ELM 16.92 17.90 26.79 30.05 27.16 61.44

RF 5.31 6.61 7.65 10.01 11.40 19.06

XGB 5.61 6.04 9.78 9.16 11.70 12.65

GBM 6.64 6.64 7.17 9.96 10.24 19.09

RL 5.31 6.61 7.65 10.01 11.40 19.06



Production, 35, e20240092, 2025 | DOI: 10.1590/0103-6513.20240092 14/19

The radar chart (Figure 8) summarizes model performance across RMSE, MAE, R2, and MAPE. ELM excelled 
in RMSE and R2, indicating good absolute fit and variance explanation, but performed poorly in MAPE, showing 
high relative error. GBM showed balanced performance, ranking well in RMSE and R2, and moderately in MAE 
and MAPE, confirming its robustness. LR had weaker results across all metrics, especially in R2, indicating limited 
explanatory power. SVR led in MAE and did well in MAPE, but underperformed in RMSE and R2, suggesting 
good average error control but less variance capture. RF delivered strong, consistent performance, particularly in 

Figure 7. Performance graph of models according to MAPE for three and six variables.

Figure 8. Radar chart indicating the position of best and worst results for the models.
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MAPE, making it a reliable and well-rounded option. XGBoost topped MAPE, with strong MAE results, though 
it ranked lower in RMSE and R2, highlighting its strength in relative accuracy over absolute fit. 

To complement RMSE, MAE, and R2, scatter plots of observed vs. predicted effort values were used to assess 
error distribution and generalization for the top models (ELM, GBM, SVR), based on five-fold cross-validation. In 
Figure 9, ELM showed high variability across folds, with greater dispersion, particularly for higher effort values, 

Figure 9. Observed versus predicted values ​​for the ELM model.

indicating difficulties in capturing complex patterns. This inconsistency, including some large prediction errors, 
may stem from ELM’s random weight initialization and sensitivity to outliers, which undermine its reliability.

Visually, the GBM model showed the most consistent performance among the three models analyzed. The 
predictions are well aligned with the ideal line across all folds, especially for low and medium effort values. 
Despite some deviations at extreme values, the model demonstrated low dispersion and good generalization 
ability, suggesting that it is robust and reliable for the task of effort estimation, as shown in Figure 10.

Figure 10. Observed versus predicted values ​​for the GBM model.
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Figure 12. Comparison of techniques using confidence interval.

Figure 11. Observed versus predicted values ​​for the SVR model.

The SVR model showed intermediate performance (Figure 11). Compared to the ELM, the predictions are 
closer to the ideal line, although with slightly more dispersion than the GBM. The model performed reasonably 
well across the folds and showed stable performance, with moderate errors in the more extreme cases. Overall, 
the SVR appears to be a viable alternative, although not as precise as the GBM.

Based solely on the visual analysis of the graphs, it can be concluded that the GBM model is the most suitable 
for effort estimation, followed by the SVR. The ELM, although showing potential, exhibited greater variability 
and imprecision in its predictions, which limits its practical applicability in this context.

Figure 12 graphically compares the confidence intervals of MAEs for different techniques using an independent 
samples t-test.



Production, 35, e20240092, 2025 | DOI: 10.1590/0103-6513.20240092 17/19

Through a confidence interval, an inference can be made as follows: if the CI does not contain zero, then 
H0 is rejected, indicating a statistical difference between the groups. Since all intervals cross zero, it means that 
none are statistically more significant than the others.

The variable team size showed the highest importance score (0.4109), indicating its strong influence on model 
predictions, followed by functional size (0.3312), which also contributed significantly. In contrast, language type 
(0.0123) and development type (0.007) had minimal impact, as illustrated in Figure 13. These findings suggest 
that project complexity and scale, reflected in team and functional siz, are key drivers of effort estimation. The 
limited influence of language and development type may stem from low variability in the dataset or indirect 
effects. The marked difference in variable importance highlights the potential to streamline future models by 
excluding low-impact features, improving both efficiency and focus. Moreover, this insight can inform data 
collection priorities by emphasizing the most predictive attributes.

Figure 13. Importance of predictor variables.

4. Conclusion

The comparative analysis between different machine learning models applied to effort prediction in software 
projects showed that the performance of the algorithms varies significantly depending on the number of variables 
used and the evaluation metric considered. Among the models analyzed, the GBM stood out for its robustness, 
consistency, and ability to generalize, achieving the best results in terms of the coefficient of determination (R2) 
and maintaining competitive performance in both RMSE and MAE. This highlights its suitability for handling 
more complex scenarios with multiple variables.

The SVR, in turn, showed the lowest MAE values with both three and five variables, indicating excellent 
performance in terms of mean absolute error. Its stability across different scenarios, despite having lower 
explanatory power (R2), reinforces its value as an accurate and reliable model, especially when the goal is to 
minimize average deviations in the estimates.

On the other hand, the ELM demonstrated good performance in contexts with lower dimensionality, especially 
in scenarios with three variables, but exhibited greater variability and a drop in performance as complexity 
increased. This suggests that ELM can be useful in situations with fewer attributes and constrained execution 
time, although its sensitivity to outliers limits its robustness.

Other models, such as RF and LR, showed intermediate performance, while XGBoost achieved the worst 
results across all metrics, indicating difficulty in adapting to the analyzed dataset.

The graphical analysis of observed vs. predicted values reinforced these conclusions, with GBM showing the 
best adherence to the ideal prediction line, followed by SVR. Although promising, the ELM exhibited greater 
dispersion and inconsistency across the folds. Additionally, the statistical analysis through the T-test indicated 
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that the differences between the models, although evident in the metrics, were not statistically significant within 
the adopted confidence intervals.

Finally, the variable importance analysis highlighted that factors related to Team Size (0.4109) and Functional 
Size (0.3312) were the most influential predictors in the model, whereas Language Type (0.0123) and Development 
Type (0.007) had minimal impact. This indicates that team-related and functional aspects are key determinants 
of model performance. The findings suggest that less relevant variables may be excluded in future analyses to 
enhance model efficiency and guide data collection priorities.

Therefore, it is concluded that the choice of the ideal model should consider not only performance metrics but 
also the number and nature of the available variables. GBM stands out as the best overall alternative, especially 
in more complex contexts, while SVR offers an effective solution for minimizing mean error, and ELM can be 
advantageous in scenarios with fewer variables and computational constraints.

Although the results obtained are promising, this study has some limitations that should be considered. 
The main limitation relates to the quantity and variety of data available, which may have restricted the models’ 
ability to capture more complex nuances of development effort. The inclusion of additional predictive variables, 
such as team experience, software quality, number of reported defects, user satisfaction level, and especially the 
total project cost, could enhance the robustness and explanatory power of the models. Therefore, we suggest 
that future studies explore the incorporation of these attributes, if available, to enrich the analysis.

Another limitation is related to the difficulty of making direct comparisons with other studies in the literature, 
as many use different data subsets or specific approaches for distinct sectors. To mitigate this issue, we recommend 
that future research test the proposed model using databases with similar characteristics, which could enable 
more consistent comparisons between techniques and improve the generalization of the findings presented here.
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