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Abstract

Paper aims: This article introduces a novel hybrid methodology in order to optimise dual-axis photovoltaic tracking 
systems in three Argentinian provinces by combining artificial intelligence, swarm intelligence and the productive chain. 
It identifies the most suitable strategy by balancing fixed-panel worst-case scenarios with continuous-tracking best-case 
scenarios and incorporating the decision makers’ preferences.

Originality: Firstly, the novel research methods listed below combine mathematical modelling and graphical analysis, and 
highlighting their complementarity and distinct contributions. Secondly, theoretical, methodological and practical gaps are 
identified and addressed in Argentina and other under-explored regions. This offers decision-makers a viable interim solution.

Research method: Firstly, it involves the novel mathematical modelling, simulation, optimisation, comparison of dual-axis 
solar tracking in fixed and mobile cases using multi-criteria techniques, while also validating across provinces and extreme 
scenarios. Secondly, it consists of a novel hybrid multi-criteria optimisation model combining particle swarm optimisation with 
constriction factor and a fuzzy-guided feedback metaheuristic system. It is for dynamic boundary-reflected constraints, the 
Analytic Hierarchy Process, and radial basis function neural networks. Thirdly, this survey is based on data obtained through the 
present line of research, including government and meteorological station data, manufacturer data and independent research.

Main findings: This methodology improves energy efficiency by 10–27% and economic performance by 40–110% compared 
to fixed panels, depending on regional and technical conditions.

Implications for theory and practice: This novel, scalable hybrid methodology combines the aforementioned research methods 
(theory) with support for decision-making in the planning of renewable energy projects in constrained economies (practice).
Keywords
Multi-objective hybrid methodology. Artificial Intelligence. Swarm-based optimisation techniques. Tracking solar system 
and Argentinean production chain. Satisfactory decision making.
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1. Introduction

Artificial Intelligence (AI) is a set of computational tools that can outperform human reasoning in terms of 
speed and accuracy. By simulating operational scenarios, AI identifies the most efficient solutions for complex 
systems. Industry 4.0 refers to the fourth industrial revolution, driven by the integration of advanced technologies, 
including AI, into industrial processes. This transformation increases productivity and competitiveness, while 
promoting energy efficiency and sustainable energy use - key factors in reducing environmental impact 
and optimising resource consumption, especially in renewable solar energy systems (Alizamir  et  al., 2023; 
Azam et al., 2024; Saraji et al., 2024).

In this context, the following aspects are important for the production and efficient use of energy:

(1)	 Energy and costs invested in the operation of the energy source and the production chain during its life 
cycle. A production chain is the set of interconnected processes and activities that transform resources into 
products or services (renewable power sources), from their origin to their final consumption. By adopting 
smart technologies, industry can better manage and optimise energy consumption, ensuring long-term 
sustainability while addressing future energy challenges. Life Cycle Assessment (LCA) of renewable energy 
sources helps to assess operational costs and provides significant economic, social and environmental benefits 
(Alizamir et al., 2023; Koshkarbay et al., 2024; Güler et al., 2025).

(2)	 Energy and benefits generated: The focus is on the energy and economic benefits gained over the lifetime of a 
solar system. Optimising energy input, output and economic returns in renewable energy generation - particularly 
solar energy - has become increasingly important. Biaxial solar tracking systems adjust the position of solar 
panels throughout the day to maximise solar energy capture. These systems modify both tilt and elevation 
angles, although challenges such as variations in solar radiation, local climatic conditions and mechanical 
limitations can complicate the process (Kuttybay et al., 2024; Sobirov et al., 2023; Praveen & Menaka, 2024; 
Hadroug et al., 2023).

Tables  1 to Table  4 summarise the existing literature as of March 2025 and provide a structured gap 
analysis. They highlight the limitations of current solar tracking optimisation methodologies and support the 
theoretical, methodological and practical contributions of this study. Table 1 shows the search results from 
the Scopus database (conducted in march 2025) with the authors, country, key techniques used: Analytical 
Hierarchy Process (AHP), Life Cycle Analysis (LCA), Artificial Neural Network (ANN), Fuzzy Decision Making 
(FDM), Particle Swarm Optimisation (PSO).

Table 2 shows the techniques used in search results in the Scopus database (conducted in march 2025) and 
countries (Ctry) according to the United Nations Statistical Division.

Table 3 shows a qualitative evaluation of the methodologies used to search the Scopus database in March 2025, 
as well as an evaluation of countries according to the United Nations Statistical Division.

General Challenges: However, there are several general challenges that need to be overcome in order to 
optimise solar energy systems (see Table 1 to Table 4):

(1)	 Optimisation of Solar Tracking Systems: Optimising solar tracking systems involves many variables (e.g. panel 
position, time of day and local conditions) interacting in a complex, non-linear way. It is a multi-objective 
problem that requires balancing conflicting objectives such as maximising energy output, minimising costs 
and reducing environmental impact. The more accurately a solar panel tracks the sun, the more efficient it 
becomes, but this increases energy, economic and manufacturing costs. As a result, traditional mathematical 
methods often struggle to find the global optimum, and advanced techniques such as AI and optimisation 
techniques based on swarm intelligence, such as Particle Swarm Optimisation (PSO), are increasingly being 
used to find more robust solutions (Azam et al., 2024; Sun et al., 2024; Kizielewicz et al., 2024).

(2)	 Inefficiencies in determining optimal panel angles: Determining the optimum angle for solar panels is 
challenging due to variables such as variations in solar radiation, cloud cover and local climate conditions. These 
factors are difficult to predict and can have a significant impact on solar system performance. The optimisation 
process becomes even more complex when non-monetary metrics such as environmental impact, sustainability 
or long-term energy efficiency are included. These objectives often conflict with traditional financial metrics, 
making it necessary to balance immediate economic returns with broader sustainability goals. To meet these 
challenges, more flexible models using AI and fuzzy decision systems are needed to account for both measurable 
and intangible factors (Sarroca et al., 2024; Sameera et al., 2024; Kuttybay et al., 2024).



Production, 35, e20240139, 2025 | DOI: 10.1590/0103-6513.20240139 3/55

(3)	 Complexity of mathematical modelling: The modelling of the energy produced by a photovoltaic system is 
still under discussion. This is because there are several different methods of determining the panel’s energy 
irradiance. The influence of angles requires complex astronomical calculations based on the site’s geographical 
location. In addition, climatic factors such as cloud cover can affect the results by reducing the panel’s energy 
production. Therefore, optimising solar energy systems requires balancing factors such as energy output, economic 
cost, environmental impact and system efficiency. However, as these factors are often measured in different 
units, direct comparisons are difficult. Linear programming uses linear weighting systems to standardise these 
metrics, but selecting the right weights and understanding how they interact is complicated. Even small changes 
in weighting can significantly impact optimisation results, so careful attention is essential to balance these 
factors effectively (Kizielewicz et al., 2024; Wen & Ajay, 2024; Sameera et al., 2024; Koshkarbay et al., 2024).

(4)	 Dynamic solar tracking optimisation: Current methods of optimising solar tracking systems dynamically 
(i.e. on an hourly or daily basis) often fail to accurately model economic and environmental uncertainties. 
Furthermore, these methods are not cost-effective in real-world applications. This presents an opportunity 
to refine AI tools to find optimal solutions for solar energy systems. AI techniques, such as neural networks 
and optimisation algorithms, can analyse large data sets and identify patterns that traditional methods might 
overlook. However, AI models must also account for uncertainties such as variations in solar radiation, local 
climate changes, and mechanical limitations. These models must balance multiple objectives — maximising 
energy output, minimising costs and considering environmental impacts — while maintaining system efficiency 
(Azam et al., 2024; Sun et al., 2024; Kazem et al., 2024). Integrating these four aspects makes it more difficult 
to develop metrics that enable decision-makers to make dynamic decisions in the face of multiple constraints. 
This presents a challenge in developing metrics that facilitate real-time decision-making in solar energy systems. 
While annual and monthly optimisation of panel angles is achievable with current technology (see Table 1), 
more frequent dynamic adjustments (hourly and daily) are limited by modelling and computational challenges. 
This restricts the design of investment plans and production systems that could optimally supply the energy 
chain in response to changing environmental and economic scenarios.

Table 1. Search results in the Scopus database (conducted in march 2025) and countries (Ctry) according to the 
United Nations Statistical Division.

Authors Ctry Key techniques AHP LCA ANN FDM PSO Statistic

Hammi et al. (2024) Global (GL) Renewable comparative analysis on energy and cost using 
Statistical and Life Cycle Analysis (LCA).

X X X

Azam et al. (2024) Global (GL) Semi-continuous tracking performance evaluation using 
Statistical analysis for efficiency comparison.

X X

Zou et al. (2024) CHN Concentrating solar systems and tracking with temperature 
effects with Statistical analysis.

X X

Sameera et al. (2024) Global (GL) Partial shade movement analysis to maximize power using 
PSO and AI-based optimisation.

X X

Kuttybay et al. (2024) Global (GL) Performance comparison of solar trackers using 
Fuzzy inference and Neural Networks.

X X

Hadroug et al. (2023) DZ Dual-axis performance optimisation (tilt/orientation) using 
Fuzzy inference and Neural Networks.

X X

Güler et al. (2025) KG Single-axis tracking performance improvement via 
Fuzzy inference and Swarm Optimization.

X X

Lu & Qin (2024) CHN Single-axis performance improvement via Statistical 
analysis and Swarm Optimization.

X X

Saraji et al. (2024) LT Single and dual-axis tilt/orientation optimisation using 
Fuzzy Decision methods and Linear Programming.

X X

Praveen & Menaka (2024) AUS Dual-axis optimisation using Neural Networks and 
Swarm Optimization.

X X

Yadav et al. (2024) IN Solar radiation prediction for fixed panels using 
Neural Networks.

X

Alizamir et al. (2023) IRQ Daily solar radiation forecasting using Neural Networks 
and Statistical analysis with meteorological inputs.

X X

Sun et al. (2024) Global (GL) Real-time tracking of horizontal single-axis systems using 
Neural Networks and Statistical analysis.

X X

Koshkarbay et al. (2024) KAZ Dual-axis tracker performance under weather variability 
using Neural Network and Statistical analysis.

X X

The acronym in the table are: Analytical Hierarchy Process (AHP), Life Cycle Analysis (LCA), Artificial Neural Network (ANN), Fuzzy Decision Making (FDM), Particle Swarm 
Optimisation (PSO). Source: The Authors.
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Table 2. Techniques used in search results in the Scopus database (conducted in march 2025) and countries (Ctry) according to 
the United Nations Statistical Division.

Authors Ctry Theoretical Gap Methodological Gap Practical Gap

Hammi et al. (2024) Global (GL) Low integrated framework 
between mathematical 
models and AI-based 

optimisation.

Low integration between 
AI-based dynamic 

optimisation and LCA 
indicators.

There is limited ability 
to assess the trade-offs 
between energy gains 

and costs.

Azam et al. (2024) Global (GL) Lacks a theoretical basis 
for adaptive systems under 

changing conditions.

It does not explore hybrid 
intelligent systems for 

real-time optimisation in 
varying conditions.

It restricts the dynamic 
adaptation to weather 

variability, responsiveness 
and efficiency.

Zou et al. (2024) CHN Lacks a systems-based 
approach for multi-criteria 
energy decision-making.

Lacks a multi-criteria 
dynamic optimisation 

approach with 
environmental and 

economic indicators.

Hinders balanced 
decision-making, 

potentially leading to 
suboptimal performance in 

real-world deployment.

Sameera et al. (2024) Global (GL) Does not provide a 
theoretical link between 

sustainability and 
AI algorithms.

Lacks a multi-criteria 
dynamic optimisation 

approach with 
environmental and 

economic indicators.

Reduces the potential to 
balance energy output 
with sustainability and 

cost-effectiveness.

Kuttybay et al. (2024) Global (GL) No unified theoretical 
framework combining 

AI techniques.

It does not propose a 
unified AI framework 

that combines multiple 
techniques.

Limits practical applicability 
and scalability of the 
proposed solutions.

Hadroug et al. (2023) DZ Does not consider 
region-specific 

adaptation within the 
optimisation theory.

Does not address 
uncertainty or regional 
adaptation in dual-axis 

optimization.

These models may be less 
accurate or efficient in 

different geographical or 
climatic contexts.

Güler et al. (2025) KG Fails to consider increasing 
complexity in variable 

environments.

Restricted to single-axis 
tracking and lacks 

multi-objective analysis or 
regional validation.

Narrows the scalability 
and ignores performance 

optimization in more 
complex environments.

Lu & Qin (2024) CHN Lacks a theoretical 
foundation for adaptive 

feedback control.

Does not integrate fuzzy 
logic or learning-based 
feedback for dynamic 

adjustment.

Reduces system 
adaptability to real-time 
changes, such as shifting 

weather patterns.

Saraji et al. (2024) LT It does not explore 
dynamic optimisation in 

variable conditions.

Lacks real-time adaptability 
and robustness under 
variable conditions.

Undermines the system’s 
ability to maintain optimal 
performance in dynamic 

environments.

Praveen & Menaka (2024) AUS No theoretical basis linking 
fuzzy decision-making and 

Theoretical model.

No consideration of 
model indicators or 

fuzzy decision-making in 
system model.

Weakens decision-making 
in uncertain or 

multi-criteria scenarios, 
common in real-world 

applications.

Yadav et al. (2024) IN Does not extend predictive 
models into dynamic 
system control theory.

Lacks applicability 
to dynamic systems 
or integration with 

optimization algorithms.

Inadequate for improving 
performance in tracking 
systems, where dynamic 
adjustment is critical.

Alizamir et al. (2023) IRQ Lacks conceptual 
connection between 

prediction and control in 
solar systems.

Predictive model not linked 
to optimisation of control 

or tracking systems.

Prevents prediction outputs 
from being used to actively 

improve energy capture.

Sun et al. (2024) Global (GL) No decision-making model 
based on AI-powered 

prediction.

Lacks optimisation layer or 
decision-making logic.

Limits the usefulness of 
the predictions in guiding 

system behaviour for 
better efficiency.

Koshkarbay et al. (2024) KAZ Lacks a theoretical 
framework for adaptive 

hybrid control.

Does not address hybrid 
optimisation under weather 

variability.

The system underperforms 
in unpredictable 

environmental conditions.

Source: The Authors.
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Table 3. A qualitative evaluation of the methodologies used to search the Scopus database (conducted in March 2025) and of 
countries (Ctry), according to the United Nations Statistical Division.

Authors
Methodology 
Complexity

Solution Quality / 
Efficiency

Mathematical 
model Constraints 

Complexity

Economic / 
Technical Cost

Long-term 
scalability

Future 
applicability to 

prototypes

Hammi et al. (2024) Low:
Simple Statistical 

analysis

Low:
suboptimal 
solutions

Low:
Includes weather 
without a model

Low:
computational and 

setup cost

Low:
Limited 

Long-term 
scalability

Low:
Usable as 

baseline or 
reference

Azam et al. (2024) Low:
Simple Statistical 

analysis

Low:
suboptimal 
solutions

Low:
Includes weather 
without a model

Low:
computational cost

Low:
Limited 

Long-term 
scalability

Low:
Static prototypes

Zou et al. (2024) Low:
Simple Statistical 

analysis

Low:
suboptimal 
solutions

Low:
Includes weather 
without a model

Low:
computational cost

Low:
Limited 

Long-term 
scalability

Low:
Usable as 

baseline or 
reference

Sameera et al. (2024) Medium:
PSO based with 

multiple variables

Medium:
good 

performance in 
energy output

Low:
Lacks dynamic 

indices and 
constraints

Low:
computational and 

setup cost

Medium:
Replicable 

across similar 
industrial 

cases

Medium:
Suitable for 
prototyping

Kuttybay et al. (2024) Medium:
Hybrid AI with 
fuzzy model

Medium:
good 

performance in 
energy output

Low:
estimated 

mathematical 
model and 
constraints

High:
Technically 
demanding

Medium:
Replicable 

across similar 
industrial 

cases

Low:
Limited for 
practical 

deployment

Hadroug et al. (2023) High:
fuzzy optimization

Medium:
good 

performance in 
static energy 

output

Low:
Lacks dynamic 

indices and 
constraints

High:
Technically 
demanding

Medium:
Replicable 

across similar 
industrial 

cases

Medium:
Suitable for 
simulated 

prototyping

Güler et al. (2025) Medium:
Hybrid AI with 
fuzzy model

Low:
suboptimal 
solutions

Medium:
Soft constraint 
incorporation

Medium:
computational and 

setup cost

Medium:
Replicable 

across similar 
industrial 

cases

Medium:
Suitable 
for basic 

prototyping

Lu & Qin (2024) Medium:
Hybrid PSO and 
statistical model

Medium:
Reliable within 

data range

Low:
Lacks dynamic 

indices and 
constraints

Medium:
computational and 

setup cost

Medium:
Replicable 

across similar 
industrial 

cases

Low:
Usable as 

baseline or 
reference

Saraji et al. (2024) Medium:
Hybrid Fuzzy 
and Linear 

Programming

Low:
suboptimal 
solutions

Low:
Linearised 

non-dynamic 
indices and 
constraints

Low:
resource use

Low:
Limited 

Long-term 
scalability

Low:
Usable as 

baseline or 
reference

Praveen & Menaka (2024) Medium:
Hybrid PSO plus a 

neural network

Low:
suboptimal 
solutions

Low:
Lacks dynamic 

indices and 
constraints

Medium:
computational and 

setup cost

Medium:
Replicable 

across similar 
industrial 

cases

Medium:
Suitable 
for basic 

prototyping

Yadav et al. (2024) Low:
Prediction-oriented

Medium:
Good for trend 

forecasting

Low:
Ignores dynamic 

and real-time 
constraints

Low:
Simple 

implementation

High:
Generalizable 

predicted 
model

Medium:
for basic 

prototyping

Alizamir et al. (2023) Medium:
AI-based 

methodology

Medium:
Seasonal patterns

Low:
Lacks dynamic 

indices and 
constraints

Medium:
Resource-efficient

Medium:
Moderately 
adaptable

Low:
Basic AI systems

Sun et al. (2024) Low:
single axis system

Low:
suboptimal 
solutions

Low:
No 

decision-making 
prediction model 

based on AI

Low:
cost but 

underperfomedsystem

Low:
long-term 
scalability 
potential

High:
limited useful 
prototyping

Koshkarbay et al. (2024) Low:
Lacks a theoretical 
dual axis model

Low:
suboptimal 
solutions

Low:
It does not 

optimise under 
weather variability

Low:
cost but 

underperfomed 
system

Low:
long-term 
scalability 
potential

Low:
Basic simulated 

prototyping

Source: The Authors.
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Main tools: These articles address the challenges posed by some of the tools that make up the current 
methodology (Table 1 to Table 4):

(1)	 Fuzzy Decision-Making Theory provides valuable tools for solving complex optimisation problems in uncertain 
situations. For instance, it can be employed to determine the optimal tilt angle of a photovoltaic system, 
achieving a balance between energy production, cost and sustainability. Fuzzy inference systems (FIS) can process 
vague or imprecise information by assigning degrees of membership to different conditions (Cao et al., 2024; 
Kuttybay et al., 2024). This allows for more nuanced and realistic decision-making in environments where 
precise data is unavailable or unreliable. Conversely, fuzzy optimisation models use FIS to identify optimal 
solutions in uncertain environments by considering multiple factors, such as minimising costs or maximising 
efficiency. This flexibility makes them particularly well-suited to real-world energy systems that operate under 
variable climatic and operational conditions (Kizielewicz et al., 2024; Hadroug et al., 2023; Güler et al., 2025).

However, these models also have significant limitations. Their performance depends heavily on the design of 
the membership functions and rule base, which often requires subjective decisions and expert input. Furthermore, 
applying fuzzy optimisation to complex systems or large datasets can be computationally intensive and costly. 
They may also struggle to provide clearly defined outputs when deterministic or binary decisions are required. 
Additionally, the lack of standardised validation procedures can affect their generalisability and reliability when applied 
to different case studies. The optimal use of preference functions, t-norms and weighting schemes, particularly in 
the context of multi-objective photovoltaic tracking problems where balancing competing criteria is delicate and 
highly context-dependent, remains a topic of ongoing discussion. To address these challenges, fuzzy models can 
be effectively combined with data-driven, population-based techniques, neural networks, and swarm intelligence. 
This enables automatic rule tuning, improved generalisation, and dynamic adaptation to environmental variability. 
This increases the robustness and interpretability of the optimisation process. In the long term, this would make 
industrial systems more flexible, scalable, cost-effective, sustainable and adaptable to the needs of the production chain.

Table 4. Comparative assessment of Analytic Hierarchy Process (AHP), Fuzzy Decision-Making, Radial Basis Function (RBF) and 
Particle Swarm Optimization (PSO) and a Combination of all tools.

Criterion AHP FDM RBF PSO Fixed Panels
Combination 
of all tools

Theoretical Gap Requires 
predefined 

criteria 
weights; 

lacks learning 
ability

Requires expert 
knowledge, 
fixed rules, 

limited 
adaptability

Accuracy 
affected 

by climatic 
noise; requires 

extensive 
training

Risk of getting 
trapped in 

local optima; 
sensitive to 
parameter 

tuning

Without 
multiple 
criteria 

(economic, 
environmental, 

operational)

Overcomes 
gaps via 

hybridization 
and multi-

criteria decision 
logic

Methodological Gap Static 
structure; lacks 

feedback or 
adaptation

Not scalable 
for complex 

dynamic 
environments

Requires 
clean data 

and tuning of 
structure

Needs careful 
parameter 

selection and 
validation

Lacks 
intelligent 
learning/ 

adaptation

Fuses multiple 
AI models for 

robust dynamic 
control

Practical Gap High 
dependence on 
expert input; 
limited for 

real-time use

Hard to 
generalize to 

new regions or 
contexts

Limited 
interpretability 

and high 
computation in 

training

Risk of poor 
performance 
under unseen 

conditions

Cannot adjust 
in real-time

Designed 
for adaptive, 
region-aware, 

low-cost 
deployment

Contribution Structured 
decision 
support 

in criteria 
weighting

Solar tracking 
and fuzzy 

fitness function 
with dynamic 
restrictions

This will be 
used to model 
solar tracking 
and climatic 
conditions.

Hybridized 
with FDM, 

AHP, RBF and 
Fixed Panels 

cases

Modeling of 
the maximum 
and minimum 

dynamic 
constraints

Hybrid 
Intelligent, 

multi-objective 
optimal 
solution

Considers Multiple Criteria Yes Yes No No No Yes
(hybrid 

optimization)

Weather variability No No Yes Yes No Yes
(fully 

integrated)

Solution Quality vs Effort or Cost Low
(Weighting 
subjectivity)

Medium–Low
(Calibration 
dependent)

Medium–Low
(Data 

dependent)

Medium
(Suboptimal 
convergence)

Low
(Dynamic 

inefficiency)

Medium–High 
(Expected)

Applicability to Prototypes and Scalability Low Medium–Low Medium–Low Medium Low Medium–High 
(Expected)

Published in the state of the art Yes Yes Yes Yes Yes No
Source: The Authors.
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(2)	 Artificial neural networks, inspired by the human brain, consist of layers of artificial neurons that process 
information hierarchically. Radial Basis Function (RBF) networks are powerful modelling and prediction tools for 
complex systems involving nonlinear relationships. They can analyse data to identify intricate patterns involving 
variables such as solar irradiance, time, temperature and panel orientation. This allows them to predict energy 
output with a high degree of accuracy. Their ability to quickly learn and adapt to changing input conditions makes 
them particularly useful in dynamic environments such as solar tracking systems, where real-time responsiveness 
is important. Despite their strengths, RBFs also have several limitations. Effective training usually requires large, 
diverse, and high-quality datasets. In the presence of noise or insufficient data, their performance can degrade 
significantly. Designing the architecture, particularly selecting basis functions, determining the number of hidden 
nodes, and tuning parameters, can be computationally demanding and often relies on heuristic choices or expert 
knowledge (Praveen & Menaka, 2024; Yadav et al., 2024; Sun et al., 2024; Cuevas et al., 2024).

Furthermore, neural networks are often considered ‘black boxes’ due to their low interpretability. This can hinder 
trust and adoption in applications that require transparency. Overfitting is another concern, particularly when the 
training data is limited or does not represent future operating conditions accurately. Although RBF can adapt to 
new data, they often require retraining or fine-tuning as system dynamics evolve, which can be resource-intensive. 
For these reasons, RBF networks are often more effective when combined with other techniques that can compensate 
for their weaknesses. For example, integrating fuzzy logic can incorporate expert knowledge and improve 
interpretability, while metaheuristic algorithms such as particle swarm optimisation (PSO) can automatically adjust 
network parameters to improve accuracy and generalisation. In hybrid systems, RBFs provide powerful predictive 
capabilities, while fuzzy systems and swarm intelligence add robustness, transparency, and optimisation capacity. 
This makes the overall system more reliable and adaptive in real-world solar energy applications.

(3)	 Swarm intelligence, and particle swarm optimisation (PSO) in particular, is a powerful technique inspired 
by the collective behaviour of biological populations. In PSO, each ‘particle’ represents a potential solution 
and explores the search space, guided by its own experience and that of its neighbours. This makes PSO 
highly effective at solving complex optimisation problems. PSO is particularly well-suited to multi-objective 
scenarios, such as solar energy systems, where balancing conflicting criteria — such as maximising energy 
output, minimising cost, and reducing environmental impact — is essential. One of PSO’s key strengths is its 
ability to efficiently explore large search spaces and converge on globally optimal solutions without requiring 
gradient information. However, PSO has its limitations. It can exhibit premature convergence, particularly in 
high-dimensional or rough search spaces where particles can become trapped in local optima. Its performance 
is also sensitive to parameter settings such as inertia weight, cognitive and social learning factors, and swarm 
size. These settings may require careful tuning for each specific problem. Furthermore, scalability can become 
challenging as problem size increases, requiring more computational time and memory. In dynamic environments 
such as real-time solar tracking, adaptive strategies may be necessary to maintain exploration and solution 
quality (Lu & Qin, 2024; Praveen & Menaka, 2024; Güler et al., 2025).

Comparative GAP: Table 4 provides a comparative assessment of key techniques explored in the literature, 
such as fuzzy decision-making, RBF and PSO, and summarises how these compare to traditional solar tracking 
approaches. It also highlights the theoretical, methodological and practical limitations of these techniques and 
the final column introduces its combination. This comparative framework justifies the methodological choices 
made and outlines the broader vision of the research. Specifically, it demonstrates how integrating intelligent 
decision systems, predictive models and adaptive optimisation can make solar tracking solutions more scalable, 
efficient and cost-effective. These tables therefore act as a roadmap, positioning this work within the existing 
state of the art and indicating its anticipated short- and medium-term contributions.

The identified challenges have sparked a growing interest in dynamic industrial hybrid approaches that combine 
PSO with other intelligent techniques to improve performance. Similarly, when applied to FIS, PSO can refine 
membership functions and rule sets, thereby making decision-making processes more flexible and interpretable. 
These approaches are particularly beneficial in solar energy applications, where simultaneous consideration of 
challenges such as data-driven prediction, uncertainty management, and multi-criteria decision-making is required. 
Despite significant research into solar tracking optimisation using AI techniques, most existing studies are limited 
to isolated models or simulations. Often, these studies lack integration with real production data or the inclusion 
of multi-criteria constraints tailored to specific regional contexts. Furthermore, there is a notable absence of 
comprehensive frameworks that integrate fuzzy modelling and optimisation, neural networks, and swarm intelligence 
into a coherent methodology reflecting realistic operational and economic conditions. Notably, no integrated 
optimisation approach has been proposed for Argentina and other Latin American regions that considers technical 
performance, economic feasibility, system-level constraints and decision-maker preferences simultaneously.
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This innovative work introduces an intelligent, multi-objective optimisation framework specifically designed 
for the solar energy sector. It addresses the methodological and regional limitations of solar energy system 
optimisation. The framework combines advanced mathematical modelling, artificial intelligence, and swarm-based 
optimisation techniques. This approach considers real-world constraints, decision-maker preferences, and 
multi-criteria evaluations. Consequently, it fills the theoretical, methodological and practical gaps in the field. 
In theory, the methodology can model the dynamic relationship between solar panel movement and environmental 
variables such as climate, location and time of day, while also taking technical and economic limitations into 
account. In practice, this study employs a hybrid approach combining fuzzy decision theory, radial basis functions 
(RBFs) and a fuzzy-guided feedback system within a particle swarm optimisation approach incorporating a 
constriction factor (HFRCPSO-CF) to solve multi-criteria optimisation problems. This system is designed to identify 
intermediate solutions offering favourable cost-benefit trade-offs in an uncertain environment.

Finally, this methodology is employed to design intelligent, region-specific prototypes suited to the 
conditions in Argentina’s San Juan (SJ), La Rioja (LR) and Entre Ríos (ER) provinces. Unlike conventional 
fixed- or mobile-angle systems (see Section 2.3.1), the proposed model uses Gaussian fuzzy inference and RBFs 
to simulate optimal tracking strategies in changing conditions. Both hard and soft constraints are embedded in 
the mathematical formulation and fitness function to ensure physically feasible motion and reduce unnecessary 
vibrations. The effectiveness of the methodology is validated through mathematical and graphical comparisons 
of fixed systems, fuzzy rule-based tracking, RBF-based control and swarm intelligence optimisation. In this 
context, optimality is defined as a compromise that balances multiple criteria within the bounds of real-world 
feasibility and decision-maker preferences in complex, uncertain environments, rather than as a single best 
solution. The proposed model is a scalable, adaptable decision-support tool designed for sustainable energy 
planning in Argentina and other emerging regions.

This work is structured as follows: Section 2 develops the contributions and results of the proposed novel 
methodology. This section covers the proposed methodology (Section 2.1), its programs (Section 2.2) and its 
practical contributions (Section 2.3). Finally, Section 3 presents the conclusions of this work. Mathematical models 
(Appendix A Section A.1) and radial basis neural networks and Gaussian fuzzy inference system parameters 
(Appendix A Section A.2).

2. Contributions and results of the novel proposed novel methodology

2.1. Proposed novel methodology

Main methodology (see Section 2.2.2): Figure 1 illustrates the overall structure of the proposed intelligent, 
multi-criteria optimisation methodology for dual-axis solar tracking. The process begins with the loading of 
climatic and solar radiation data from national stations in Argentina, focusing on three representative provinces: 
San Juan (SJ), La Rioja (LR) and Entre Ríos (ER). Using this input, the solar position is computed via astronomical 
modelling to determine sunrise and sunset times for each day and latitude. In this context, the Radial Basis 
Function (RBF) neural network plays two distinct roles in the study (see Section 2.2.2 and Section 2.2.4). 
Firstly, it simulates meteorological conditions such as temperature, dew point, rainfall and precipitation, 
using historical data from national weather stations. This provides realistic inputs for the solar energy model. 
Secondly, it is employed as a tracking strategy (Case 8), learning from optimal movements observed in various 
scenarios to generate tilt and orientation angles for the panel. This dual application improves both the accuracy 
of the modelling and the practical relevance of the methodology. Additionally, life cycle analysis (LCA) of the 
Argentine production process provides economic data on the costs of energy, material extraction, manufacturing, 
transportation and waste management.

The following scenarios are analysed for the purposes of analysis, comparison, validation and obtaining the 
hybrid restrictions, which will be detailed in Figure 2.

Case 1 to Case 4 (fixed panels): North-facing horizontal panel (Case 1), 15º panel facing north (Case 2), 
30º panel facing north (Case 3), 45º panel facing north (Case 4).

Case 5: Mixed case with manually adjustable inclination and variable orientation according to the solar 
zenith angle zA .

Case 6 (see Appendix A Section A.1): a variable tilt angle and orientation according to the angle of incidence zθ  
and solar zenith angle zA .

Case 7 (see Section 2.2.3.): a variable tilt angle and orientation according to a fuzzy inference system.
Case 8 (see Section 2.2.4.): a variable tilt angle and orientation according to a Radial Basis Function (RBF) 

Neural Network.
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Figure 1. Proposed methodology: Multi-Objective (Fuzzy Decision Making and analytic hierarchy process), hybrid particle swarm optimisation 
with constriction factor and radial basis function of a tracking solar system in an Argentinean production chain with scenarios.

Source: The authors.

Figure 2. Novel fuzzy fitness function for calculating the system attributes with climatic factors, fuzzy decision theory, t-norm 
combination and Hybrid Fuzzy-Rigid Constraint Particle Swarm Optimisation with constriction factor (HFRCPSO-CF). 

Source: The authors.
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Case 9 (see Section 2.2.11.): The multi-objective fuzzy-guided feedback system within Hybrid Fuzzy-Rigid 
Constraint Particle Swarm Optimisation with constriction factor (HFRCPSO-CF) solves for a variable tilt angle and 
orientation. This novel fuzzy model, along with physical and economic indicators, feeds into the fuzzy decision-making 
system, which uses an Analytic Hierarchy Process (AHP) to assign exponentially weighted (EW) preferences to each 
index. A novel fitness function is then constructed using t-norm aggregation (product and sum), and is optimised 
using the HFRCPSO-CF, which handles constraints and searches for optimal tilt (β) and orientation (γ) angles.

This overall architecture enables the integration of climatic modelling, energy analysis, and intelligent 
optimisation into a unified, flexible methodology tailored to regional and operational contexts in Argentina 
(see Section 2.3.1). This framework forms the basis of the developments shown in Figures 2 to Figure 6, each 
of which focuses on a specific layer of the methodology. To avoid repetition, any aspects not explained in a 
given figure are covered in subsequent ones.

Fitness function and hybrid constraints: Figure 2 shows how the fuzzy fitness function is developed for 
use in the HFRCPSO-CF optimisation process. This function combines three energy indicators — Net Present 
Value (NPV), Obtained Energy (OE) and Invested Energy (IE) — with user-defined preferences derived through 
the AHP. These preferences are represented as EW in fuzzy functions that translate normalised performance 
values into prioritised decision criteria.

The methodology incorporates two types of constraints:

•	Hard constraints, which define strict physical or technical limits (e.g. limits on panel tilt/orientation), are enforced 
by modifying particle positions using the sort strategy explained in Section 2.2.9 and applying a boundary reflection 
strategy (see Section 2.2.11 and Appendix A Section A.1.1). This approach yields technically feasible solutions, 
albeit potentially at the expense of losing promising candidate solutions.

•	 Soft constraints, in contrast, are introduced by fuzzifying the search space using empirical motion limits derived 
from historical performance in cases 1–8. This means that these empirical bounds are derived from the system’s 
behaviour in these cases, enabling more flexible exploration of the search space. This allows for more flexible 
navigation of the optimisation landscape without ruling out promising solutions. The fuzzy T-norm operator 
applies the algebraic product to optimise performance indices and the algebraic sum to handle soft constraints 
(see Sections 2.2.3 and Appendix A Section A.1.1).

This dual aggregation strategy enhances the model’s ability to explore feasible, high-quality solutions under 
uncertainty and dynamic trade-offs. Any aspects not explained in this figure are covered in subsequent ones 
to avoid repetition.

Neural Network training, optimisation, simulation and hybrid constraints:
Figure 3 shows how an RBF is integrated with the HFRCPSO-CF. First, the RBF is trained using weather 

data (e.g. temperature, dew point, rainfall and precipitation), followed by calendar variables (day and hour). 

Figure 3. Hybrid Fuzzy-Rigid Constraint Particle Swarm Optimisation with Constriction Factor (HFRCPSO-CF) and a radial basis function. 
Source: The authors.
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This allows the climatological data and the optimal β  and γ  angles for each location to be estimated (Case 8). These 
weather predictions provide a data-driven estimate of how the system will behave under different environmental 
conditions. During RBF training, the K-means method is used to adjust the number and positions of neurons 
in the hidden layer (see Section 2.2.2 and Section 2.2.4). The performance of the RBF model is evaluated using 
the mean squared error (MSE) metric to compare the predicted and actual values during training. Training of 
the RBF model continued until the MSE fell below a predefined threshold. This strikes a balance between model 
accuracy and complexity.

The HFRCPSO-CF uses this information to inform the optimisation process, improving convergence and 
enabling adaptive responses to regional variability. As previously demonstrated, the metaheuristic incorporates 
hybrid dynamic boundary constraints and decision weights derived from fuzzy logic and AHP (see Section 2.2.3). 
The novelty lies in combining these AI tools. Together, they enable the system to anticipate and refine optimal 
configurations through evolutionary search, thereby enhancing robustness and accuracy in real-world scenarios. 
Any aspects not explained in this figure are covered in subsequent ones, to avoid repetition.

Novel optimisation, hybrid constraints and boundary reflection: Figure 4 shows how the fuzzy-guided feedback 
system works in HFRCPSO-CF, in terms of position updates and boundary handling with hybrid constraints.

Panel (a) illustrates the velocity and position update rule. Here, each particle adjusts its trajectory based 
on three components: inertia, personal best, and global best. These components are scaled by a constraint 
factor (χ), which regulates the magnitude of the updates and improves convergence stability. Panel (b) illustrates 
the strategy for addressing hard constraints. When a particle moves beyond the boundaries of the feasible 
search space (i.e. the maximum or minimum of β and γ), it is reflected symmetrically back into the domain. 
This reflection mechanism enforces physical feasibility without abruptly discarding the solution, thus preserving 
swarm dynamics. Together, these elements ensure the optimisation process remains technically viable and robust 
while maintaining search efficiency when navigating complex environments with multiple constraints, such as 
those encountered in real-world solar tracking systems.

Figure 5 illustrates the impact of exponentially weighted (EW) preferences on the fuzzy decision-making 
process and the optimisation behaviour of the HFRCPSO-CF. Panels (a) and (b) illustrate how the shape of 
the preference function changes with different EW values. Higher EW values result in sharper, more selective 
functions, whereas lower EW values soften the preference response, allowing greater tolerance in attribute 
evaluation. Panel (c) illustrates the incorporation of preference-modified index values, such as NPV, OE and IE, 
into the HFRCPSO-CF’s position update mechanism. Rather than applying a strict, threshold-based evaluation, 
the fuzzy system uses these dynamic preferences to guide the swarm within a ‘soft-constrained’ search space. 
Using EW preferences in both fuzzy inference and PSO enables the optimisation process to be fine-tuned 
according to the priorities of human decision-makers. This improves adaptability and the quality of solutions 
in multi-objective, constraint-laden solar tracking scenarios.

Analytic Hierarchy Process (AHP): Figure 6 shows how the AHP (Kizielewicz et al., 2024; Kuttybay et al., 2024; 
Hadroug  et  al., 2023; Güler  et  al., 2025; Saraji  et  al., 2024; Chrifi-Alaoui  et  al., 2025 ; Camargo, 2022; 
Camargo et al., 2024) is used to derive exponentially weighted (EW) priorities for the attributes involved in the 

optimisation process ( = i
ij

j

EW
a

EW
).

Figure 4. Hybrid Fuzzy-Rigid Constraint Particle Swarm Optimisation with Constriction Factor (HFRCPSO-CF): (a) Boundary reflection 
and (b) Rigid constraints. 

Source: The authors.
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Figure 5. (a) Decreased function, (b) Growth function and (c) Search space boundary with fuzzy constraints.
Source: The authors.

Figure 6. Analytic Hierarchy Process and consistency. 
Source: The author.

The relative importance of each attribute 
1 =ij
ji

a
a

 — namely, NPV, OE, IE, and the search space constraint — 
 
is encoded in a pairwise comparison matrix that satisfies the consistency condition, thereby ensuring logical 
coherence in the preference structure. The Perron theorem is then applied to extract the dominant eigenvector 
from the matrix. This is normalised to produce the exponential weights (EWs). The EWs are then used to shape 
the fuzzy preference functions shown in Figure 1 to Figure 5. They are also incorporated into the HFRCPSO-CF 
fitness evaluation. This approach enables decision-makers to express their preferences flexibly while ensuring 
mathematical consistency. It also directly influences the direction of the search and the evaluation of solutions 
in the HFRCPSO-CF, thereby ensuring that the optimisation process aligns with technical criteria and stakeholder 
priorities. The next section provides insights into the implementation of the algorithms of this methodology.
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2.2. Programs of the proposed novel methodology

This section outlines the key programmes developed to implement the methodology detailed in the previous 
section. Due to space limitations, the detailed derivations of many equations have been omitted. These equations 
have been refined and condensed using established models from the literature to reduce space, computational load 
while capturing the influence of key climatic factors more accurately (see Tables 1 to Table 4 and Section 2.2.1). 
The fundamental mathematical developments supporting this implementation can be found in the Appendix A.

2.2.1. Main parameters used in programs of this section

The parameters used in the beginning of the program in this methodology are obtained from four clearly 
defined sources:

(1)	 Government (Argentina, 2025a, b; Compañía Administradora del Mercado Mayorista Eléctrico, 2025) and data from 
governmental and private meteorological stations (Entre Ríos, 2025; La Rioja, 2025; San Juan, 2025; Meteored, 2025; 
Meteoblue, 2025; WeatherSpark, 2025; Straffelini et al., 2023; Ovando et al., 2021; Palmero et al., 2022).

(2)	 Technical specifications from regional manufacturers, industry and software (Ichi, 2025; National Renewable 
Energy Laboratory, 2025; Hoseinpoor  et  al., 2020, National Instruments, 2025; Photovoltaic Geographical 
Information System, 2025; Ré et al., 2021; Ceballos et al., 2023; Ortega et al., 2024. In addition, the available 
works, models and software of the tools are used to build and validate the proposed models.

(3)	 Results from our own experimental and methodologic work (Camargo, 2022; Camargo  et  al., 2024; 
Sarroca et al., 2024).

(4)	 Reviewed literature, as clarified in the provided tables (see Table 1 to Table 4).

Table 5 shows a summary of the data (latitude °  ϕ , longitude °  L , time zone   zonet h ,     Altitude masl

and the constants 
4

1
10  − 
 
  

uC
masl

 and 2    C u  to obtain the total solar irradiance, average summer temperature, 

Average winter temperature, average precipitation  and average relative humidity  %  SRH  for all provinces.
ϕ °   and °  L  have a direct effect on the climate of each city: LR (further north and at a lower altitude) 

has a warmer climate, with summer temperatures of 30°C and rainfall of 640 mm. SJ, further south and at a 
higher altitude (800 m), has more extreme temperatures, especially in winter (5°C), and less rainfall (200 mm). ER, 
further south and at a lower altitude (127 m), has a temperate climate with more frequent rainfall (1284 mm) and 
moderate temperatures. ϕ °   influences solar radiation and the general climate, while altitude and geographical 
position also play an important role in temperatures and rainfall.

2C  is a constant, independent of the location, while 1C  has been calibrated with the mean air mass   AM u  
data from the meteorological stations in order to minimise the mean square error with respect to the calculated 
value (see Equation 57). The neural network (see Section 2.2.4. and Appendix A Section A.2) was trained with 
two inputs (day and time) and two outputs (ambient temperature, cloud cover and precipitation) using data 
available from the weather record. The margin of error of this was 3% and is therefore considered acceptable. 
For reasons of space, this is not developed in this article.

Table 5. Parameters used in the mathematical model for all provinces.

Provinces ϕ °   °  L zonet     h
Altitude 
  masl

1C  
410− 

 
  

 u
masl

2C    u
Average 
Summer 

°  T C

Average 
Winter
°  T C

Average 
precipitation 

  mm
Average 

SRH %  

La Rioja 29.41− 66.85− 4− 515 4.9 1.2 30 7± 10 5± 332 50 10±

San Juan 31.53− 68.53− 4− 800 4 1.2 33 7± 5 5± 102 40 12±

Entre Ríos 32.48− 58.23− 3− 127 10 1.2 25 7 ± 12 7± 1184 64 5±
Source: The Authors.
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The maximum, minimum and average restrictions for tilt angles, orientation and beta are obtained from 
an analysis of radiation maps produced by this model. These maps showed that for inclinations between 45° 
and 60°, a higher level of energetic irradiance is not achieved; rather, it decreases. Therefore, an inclination of 
up to 60° was considered. The minimum restriction of 15° was determined by calculating the minimum viable 
inclination to prevent water accumulation on the panels, which could affect their performance. A safety factor 
was applied to this calculation. The solar panel is designed to have a maximum difference of 90° with respect 
to the sun’s orientation, and these limits are defined accordingly (Appendix A Sections A.1. and A.2).

Table 6 presents the Lower LowU  and upper UpU  limits of objective and constraint, Exponential Weights 
mEW  and their maximisation ( 1=ξ ) or minimisation ( 0=ξ ) for all provinces. Appendix A Sections A.1 and A.2. 

outlines the parameters employed in the radial basis neural network and the Gaussian fuzzy inference system.

2.2.2. Main program

As shown in Figure 1, the Main Program is a complex process involving the simulation and optimisation of 
a solar power generation system. This system uses a Radial Basis Function (RBF) to predict weather data and 
determine the best parameters for the system. The programme begins by collecting technical and power data 
from various energy sources using input particles (X ), which are associated with different tilt and orientation 
scenarios. An RBF is then trained to predict climatological data, such as temperature and precipitation. This 
RBF is subsequently applied to specific fixed-angle, tilt and motion scenarios in order to evaluate the total solar 
radiation, voltage, current and power generated.

An algorithm of objective functions and constraints is used to optimise the fitness function associated 
with the different scenarios, and the results for tilt (β ) and orientation (γ ) are returned. Life cycle analysis of 
a solar panel with a productive chain programme (Camargo, 2022; Camargo et al., 2024; Hammi et al., 2024) 
calculates the cost of producing the solar panel, taking into account material and fuel flows at each stage of 
the production chain (see Figure 1).

BEGIN /* Main Program */
Data: climatological, technical and life cycle data of solar system (see Section 2.2.1.).
Output: scenarios of the tilt β  and orientation γ  of solar system in X .
BEGIN /* Life Cycle Analysis of solar panel with productive chain */
Data: material composition of solar panel (see Section 2.1. and Section 2.2.1.).
Step 1: Calculate material and fuel flows by stage in the production chain: resource extraction, material 

processing, manufacturing, construction, transport and waste. Calculate the production costs of solar system 
associated (investment cost 1000=  IC USD , economic investment cost overhead u  ECO  and energy price

 0.25 
= 

 
g

USDp
kWh

).

Step 2: Define X in relation to the relevant cases or scenarios. The options are: A) fixed angles: 0° (Case 1), 
15° (Case 2), 30° (Case 3) and 45° (Case 4); B) fixed tilt and motion angles (Case 5); C) continuous motion 
(Case 6); and D) fuzzy inference system motion (Case 7).

FOR Case 1: 9=  DO
BEGIN /* Training a Radial Basis Function (RBF) Neural Network (see Section 2.2.4.) */

Table 6. Lower LowU  and upper UpU  limits of objective and constraint, Exponential Weights mEW  and their maximisation ( 1=ξ ) 
or minimisation ( 0=ξ ) for all provinces.

Attributes Upper Limits UpU Lower Limits LowU EW ξ

Obtained Energy  kWh  
Best case or combination best case Worst-case or combined worst-case 1.25 1

Invested Energy  kWh  
Best case or combination best case Worst-case or combined worst-case 1.00 0

Net Present Value [USD] Best case or combination best case Worst-case or combined worst-case 1.00 1

Upper constraint of β ( )min 15 ,  60+zθ zθ 0.50 1

Lower constraint of β zθ 15 0.50 1

Upper constraint of γ ( )min 90, 90  +zA zA 0.50 0

Lower constraint of γ zA ( )max 90, 90− −zA 0.50 1

Source: The Authors.



Production, 35, e20240139, 2025 | DOI: 10.1590/0103-6513.20240139 15/55

Step 3: If Case 1= , then start Training a RBF for input hour and day and outputs climatological data: 
temperature eT , dew point temperature dT , rainfall and precipitation climF .

Step 4: If Case 8= , then start training a RBF for input hour and day and outputs (inclination β  and 
orientation γ ) of the obtained cases. Save the inclination β  and orientation γ  in the particle X  (Case 8).

BEGIN /* Fuzzy fitness function */
Step 5: start Fuzzy fitness function program (see Section 2.2.10.).
BEGIN /* Hybrid Fuzzy-Rigid Constraint Particle Swarm Optimisation with Constriction Factor */
BEGIN /* Algorithm of Objective Functions and Constraints */
Step 6: If Case 9=  then start the Objective Functions and Constraints program with the boundary cases 

(Section 2.2.8. and Section 2.3.2.) and start HFRCPSO-CF (see Section 2.2.11.).

2.2.3. Fuzzy fitness function

The Fuzzy fitness function program optimise a solar power generation system, using parameters such as 
the tilt (β ) and orientation (γ ) of the generation sources. It starts with the analysis of technical and power 
data of each power source, and then an algorithm is applied to calculate the main parameters of the system. 
Several factors are evaluated, such as total solar radiation and generated voltage, current and power variables. 
Fuzzy decision-making functions are also incorporated to optimise system decisions, which is evaluated using 
an objective function and constraint (see Section 2.2.5. to Section 2.2.10.).

BEGIN /* Fuzzy fitness function */
Data: Power and technical data (see Section 2.2.1.).
Input: Particle  X  corresponding to swarm (tilt β  and orientation γ ), for each generation source studied.
Output: Fuzzy fitness function ( )f X , attributes U .
BEGIN /* Algorithm of main parameters */
Step 1: Start Algorithm of main parameters program (see Section 2.2.5.).
BEGIN /* Fuzzy decision making with this new methodology */
Step 2: Start The total solar radiation program (see Section 2.2.6.).
Step 3: Start Solar Voltage, Current and Power program (see Section 2.2.7.).
Step 4: Start Algorithm of Objective Functions and Constraints program (see Section 2.2.8.).
Step 5: Obtain the EW  using the AHP (see Section 2.1.) and start HFRCPSO-CF (see Section 2.10.).

2.2.4. Radial Basis Function (RBF) program

A radial basis function (RBF) training algorithm uses the K-means method to produce desired outputs from 
training data. An RBF consists of two layers: a hidden layer applying a radial activation function and a linear output 
layer combining the hidden layer’s outputs (Praveen & Menaka, 2024; Koshkarbay et al., 2024; Molu et al., 2024).

BEGIN /* Training a Radial Basis Function (RBF) Neural Network */
Data: Initially, the centres of the hidden neurons are equal to the input set ( =kC x). The influence of each 

neuron in the input space maxd  is obtained by trial and error and statistical data (see Section 2.2.1., Appendix 
A Section A.2, Table 5 and Table A1).

Input: Input data set x with N  inputs and S samples and a desired output set Y  with Q outputs and S samples.
Output: predicted output set  newY  with Q outputs and S samples.
WHILE (( )d3% ≥MSE Y ) DO
Step 1: through the K-means method, the number of hidden layers (M ) and centres ( kC ) are adjusted to minimise 

the mean squared error (MSE). At each stage of the process, the Gaussian domains and the distance   − kCx  are 
calculated by allocating x to kC . Then x will then belong to the centre kC  whose calculated distance is smallest.

Step 2: The new centres, kC , are calculated as the average of the x-values belonging to kC . Convergence 
has been achieved and learning is complete if kC  does not differ from the previous iteration.

Step 3: Equation 1 calculates the Gaussian activation function kε  of the distance   − kCx .

( ) ( )2 2
2

2
  

 exp       
2 2 

   −   = − ∀ =      
   

k max
k

C d
M

ε σ
σ

x
 	 (1)



Production, 35, e20240139, 2025 | DOI: 10.1590/0103-6513.20240139 16/55

Step 4: Equation 2 create the hidden layer output matrix with activations ( )  1 + N x M . A column of ones 
is added to include the bias b in the linear combination of the hidden neuron.

[ ]1 2                   = … k MO Onesε ε ε  	 (2)

Step 5: Equation 3 calculates the output weights W  and biases b by solving this system of linear equations 

(with a linear regression method). In this equation ( ) 1−T TO O O  is the pseudoinverse of O.

[ ] ( ) ( )( )1
       

−
= = T TW b pseudoinverse O Y O O O Y  	 (3)

Step 6: Equation 4 calculate the output value  newY  as a linear combination of the radial layer neurons 
outputs O, the output weights W  and the bias b (see Equation 3). The MSE is used to evaluate the performance 
of the RBF. This equation is used to predict outputs for new input data once it has been trained.

( ) ( )
( )

2 
− = + = 

 
 

∑

new
new

Y Y
Y W O b MSE

size Y
 	 (4)

2.2.5. Algorithm of main parameters program

The Algorithm of main parameters program describes the calculation of key parameters for determining 
the position of the sun and the lighting conditions in a solar power system. Where °  ϕ  is the latitude of the 
location, °  δ  is the solar declination (which varies throughout the year) and ω  is the hour angle, °  β  is the 
tilt angle (0 90< < °β ), γ  is the orientation angle ( 90 90− ° < < °γ ) and ( )sign ϕ  take into account the sign of 
the latitude (northern or southern hemisphere). °  ω  measures the angular displacement of the Sun from the 
solar meridian or solar noon. The tilt angle °  β  is 0 at horizontal and 90° at maximum tilt. The orientation 
angle gamma is  90− ° when facing east, 0 when facing north and 90° when facing east. Equation 11 is 
obtained by analysing the different vectors resulting from the angles involved and making the corresponding 
projections by means of scalar products (Wu, et al., 2022; Ichi, 2025; Sobirov et al., 2023; Kuttybay et al., 2024; 
Azam et al., 2024). Many bibliographies (see Table 1) have studied the northern hemisphere, which causes 
problems in the results when trying to apply them to the southern hemisphere, so a factor has been taken into 
account that changes the sign of some of the components.

BEGIN /* Algorithm of main parameters */
Data: latitude, longitude and time zone (see Section 2.2.1.).
Output: it returns the time of sunrise, sunset, the length of the day ( sunH ) and the associated constraints.
Step 1: Firstly, Equation 5 calculates the fractional year °  x . Other constants available are   3= −Const  

or   10= −Const . Secondly, Equation 6 calculates the angle of solar declination °  δ  which is the projection 
of the Sun on the celestial sphere relative to the Earth’s equator. Thirdly, Equation 7 calculates the equation of 
time   EoT min  (Sobirov et al., 2023).

[ ] 365 2 12( Const) 1 (1 365) (1
0 365 24

24)
18

( ) ( )° −
= − = − − ∀ < < ∩ < <

hx m m m hπ
 	 (5)

[ ]
( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( )

3

23.45 ,   
,  ( 0) 80  m  2647 399 702 7 218010  23.45,  ( 0) m  355

0.9 2 3 3 1.48 3 ,  ( 0) (264 m) (m 80 ) 
23.45,  ( 0) m 1 72

cos x Upper Limit

cos x sin x cos x

sin x cos x sin x

ϕ
δ ϕ

π
ϕ

ϕ

−

 −
 + < ∩ < < − + − + ° = = < ∩ =   − +   − < ∩ < ∩ <

− < ∩ =



 	 (6)

( ) ( ) ( ) ( )( )3229.181 0  0.075 1.8 32 14 2 40 2  −= + − − −  EoT min cos x sin x cos x sin x  	 (7)

Step 2: Equation 8 calculates the sunrise angle sW  and Equation 9 calculates the hour angle °  ω . They are for a 
given location with a longitude °  L  time zone   zonet h  according to its time difference from UTC. For the special 
case of sunrise or sunset, the 90.83=zθ  with an approximate correction for atmospheric refraction (Sobirov et al., 2023).



Production, 35, e20240139, 2025 | DOI: 10.1590/0103-6513.20240139 17/55

[ ] ( )
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[ ] ( )( ) ( )( )60 4 1 5  
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Sem St m

h L t EoT
m H h H  	 (9)

Step 5: the present work uses Equation 10 to calculate the Solar noon time   soonH h , sunshine time 
  soonH h  and the sunset time   soonH h . Where EoT  is in minutes and the latitude °  ϕ  is positive to the 

east of the Prime Meridian.

1 0
15 

round 12  1 1
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 	 (10)

Step 6: In the present work, Equation 11 calculates the solar incidence angle °  zθ  and the azimuth angle 
°  zA . Finally, the present work uses Equation 12 to calculate the constraints with upper and lower limits.

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )

   

  
  

sin cos

 +
    =      −    −  
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z
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acos sin sin cos cos cos

cos cos sinA atan
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ϕ δ ϕ δ ω
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ϕ δ ω
δ ϕ θ

 	 (11)

( )( ) ( )( ) ( )( )( )min 15 ,  60 15 min 90 , 90 max 90 , 90= + ≥ ≥ ∩ + − ≥ ≥ − −z z zConstraint A Aθ β γ  	 (12)

2.2.6. Total solar radiation program

The total solar radiation program calculates the total solar irradiance ,Gβ γ  reaching an inclined and 
oriented panel, taking into account the atmospheric conditions (Sobirov et al., 2023; Praveen & Menaka, 2024; 
Azam et al., 2024). The programme returns ,Gβ γ , which is used in the performance analysis of the solar energy system.

BEGIN /* The total solar radiation */
Data: latitude angle ϕ , declination δ , tilt β , orientation γ , hour angle ω , altitude and temperature eT  

(see Section 2.2.1.).
Input: tilt or inclination β  and orientation γ .

Output: total solar irradiance , 2
 
 
 

kWG
m

β γ .

Step 1: In the present work, Equation 13 is improved to calculate the factor cosθ  with any panel tilt 
angle β  and orientation γ . When the beta angle is zero (i.e. there is no tilt) and the gamma angle is also 
zero (i.e. it is oriented north), the azimuthal angle °  θ  is equal to the °  zθ  angle (Ahamed et al., 2021; 
Kuttybay et al., 2024).

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

cos       

        

   0.1   15 60 ( 90 90)

u sin sin cos sign cos sin sin cos

cos cos cos cos sign sin cos sin cos cos

cos sin sin sin

θ ϕ δ β ϕ ϕ δ β γ

ϕ δ β ω ϕ ϕ δ β γ ω

δ β γ ω β γ

= − +

+ +

≥ ∀ ≤ ≤ ∩ − < <

 	 (13)

Step 2: Equation 14 calculates the extra-terrestrial daily and hourly mean horizontal radiation. On the other 
hand, Equation 15 gives the extra-terrestrial daily and hourly horizontal irradiance 0 ,  H β γ  for any tilt β  and 
orientation γ  (Sobirov et al., 2023; Praveen and Menaka, 2024; Azam et al., 2024).

( )
2

2
0

1  1 .367 1 0.033 180    1 365
365

   −   = = + ∀ < <          
ext sc

kW r mG G cos m
m r

 	 (14)
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( ) ( ) ( )
( ) ( ) ( )0 ,  2
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 	 (15)

Step 3: In the present work, Equation 16 is improved to calculate the air mass AM  (Wu, et al., 2022; 
Ichi, 2025) as a function of the angle of solar incidence zθ , the ambient temperature eT  and atmospheric 
pressure (which varies with altitude).

( ) ( ) 1.25
1 273 288.15

cos 0.15 93.88  273 288.15 0.0065 
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= ⇓ ⇓ ⇓
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Air Mass Temperature Pressure

correction correction correction

θ θ
 	 (16)

Step 4: In the present work, Equation 17 is improved to calculate the atmospheric transmission coefficient TK  

and the factor f . Next, Equation 18 calculates the diffuse factor dH
H

 as a function of TK  (Sobirov et al., 2023; 
Kuttybay et al., 2024; Zou et al., 2024).

( )
0.678

1 2 
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  1  1    − +
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Step 5: In the present work, Equation 19 calculates the direct ,   DIRR uβ γ , diffuse ,   DIFR uβ γ , and 

albedo ,   ALBR uβ γ  irradiance for each day m and hour h. Finally, Equation 20 calculates the global solar 

irradiance , 2
 
 
 

kWG
m

β γ  (Kuttybay et al., 2024; Zou et al., 2024; Kuttybay et al., 2024; Sobirov et al., 2023).
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 	 (19)

( ) ( ) ( ), 0 ,  , , ,2         1 365DIR DIF ALB Sem St m
kWG H R R R m H h H
mβ γ β γ β γ β γ β γ

  = + + ∀ ≤ ≤ ∩ ≤ ≤  
 	 (20)

The constant 
2 1 .367  =  

sc
kWG
m

 is the solar irradiance at the top of the atmosphere. The variable 
2

0

 
  
 

r
r

 is 

the eccentricity for the instantaneous distance and mean distance from the Sun to the Earth r and 0r , respectively.
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The variable 0 ,  H β γ  is the solar energy that reaches the Earth’s surface directly from the Sun, without 
scattering or reflection. It occurs when the Sun is largely unobstructed by clouds, with the irradiance being more 
intense when the Sun is higher in the sky. It is proportional to the ( )cos θ , so the energy production of the 
system depends mainly on this value. ( )cos zθ  adjusts the air mass AM  according to zθ , while the additional 
factor corrects this value by taking into account the non-linear behaviour of the atmosphere at different heights 
from the Sun. As the Sun moves away from the zenith (i.e. as zθ  increases), the irradiance has to pass through 
more of the atmosphere. This adjustment is particularly important when the sun is close to the horizon, as the 
irradiance passes through more atmosphere, increasing the AM . The factor 93.88 is an empirical constant 
that helps to adjust the model and formula for atmospheric conditions. The exponent -1.25 is a non-linear 
correction factor for the relationship with the angle zθ , reflecting the behaviour of the atmosphere. The change 
in temperature and atmospheric pressure with ambient temperature correction is also included in this equation 
(Sobirov et al., 2023; Praveen and Menaka, 2024; Azam et al., 2024).

The atmospheric transmission coefficient TK  and the dH
H

 ratio play a crucial role in determining the amount 

of diffuse and direct irradiance reaching the Earth’s surface. A lower TK  indicates a more cloudy atmosphere, 
resulting in a higher proportion of diffuse dH  irradiance compared to global H  irradiance, while a higher TK  

indicates a clearer sky and a higher proportion of direct irradiance. The dH
H

 ratio adjusts this behaviour, being 

higher when TK  is low and vice versa. The γ  and β  directly affect the amount of direct irradiance received by 
the system. Correct orientation maximises direct irradiance and minimises diffuse irradiance, particularly in partly 
cloudy conditions or when there is high atmospheric diffusion (Wu, et al., 2022; Ichi, 2025).

The factor ( )1 21 − + − 
 

C Altitude Ce  models the effect of altitude on irradiance transmission; as altitude 

increases, the density of the atmosphere decreases, allowing more irradiance to pass through. It is an 
altitude-corrected, instantaneous clearness index that is linked to the absorption and dispersion coefficients 
of the Lambert-Beer-Bouguer law, and is integrated over a wide range of wavelengths (Sobirov et al., 2023; 
Kuttybay et al., 2024). Under clear sky conditions, the index characterises the attenuation of solar irradiance 
from a wavelength-integrated perspective due to atmospheric absorption and dispersion. The factor 0.678AM
adjusts for the influence of the air mass (AM), which depends on the position of the Sun, since when the Sun 
is lower in the sky (near the horizon) the irradiance has to pass through a larger portion of the atmosphere, 
increasing its scattering and absorption. This relationship is useful to obtain the total or average annual or 
monthly energy obtained by the solar panel, but difficult to apply when it is considered instantaneously in each 
hour and day of the year. Then, in this work the weather factor limcF  corrects the TK  factor for cloudiness 
(Kuttybay et al., 2024; Zou et al., 2024).

2.2.7. Solar Voltage, Current and Power program

The Solar Voltage, Current and Power program calculates the power, voltage and current produced by a 
photovoltaic system, taking into account temperature variations and their effect on the performance of the 
solar panels.

BEGIN /* Solar Voltage, Current and Power */
Data: technical and economic data of solar system and temperature (see Section 2.2.1.).

Input: total solar irradiance , 2
 
 
 

kWG
m

β γ  (see Section 2.6.).

Output: It returns the values of voltage ( pV ), current ( pI ) and power ( pP ) generated by the solar system.
Step 1: In the present work, Equation 21 is improved to calculate the variation of the coefficients with 

relative humidity %  SRH  (Hoseinpoor et al., 2020), where dT  is the dew point temperature. In this work, 

Equation 22 gives the coefficients of variation of power 
 
 ° 

P
W
C

µ , voltage 
 
 ° 

V
V
C

µ  and current 
 
 ° 

I
A
C

µ  

using the dot product operator to multiply element by element. The correction coefficients are provided by the 
manufacturer and ( )25<eT  is a Boolean value (0 or 1).
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Step 3: Equation 23 actualise the temperature for panel PT . Next, in the present work, Equation 24 is 
improved to calculate the maximum power point   nmaxP W , voltage nV ) and current   nRefIsc A  for the effect 
of temperature variation with respect to 25ºC. In this equation, the dot product operator is used to multiply 
element by element. They are based on the references (Zou, Y., Qin et al., 2024; Hraich & Haddi, 2025).
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Step 4: In the present work, Equation 25 calculates the thermal voltage   TV V  and the current of solar 

system  A  I  iteratively. They are based on the references (Hraich & Haddi, 2025).
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Step 5: Finally, in the present work, Equation 26 is improved to calculate the voltage V  pV , current 
A  pI  and the power W  pP  for each hour h and day m. The maximum power point of the voltage-current 

curve is sought, with which the power obtained by the solar system is calculated.
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2.2.8. Algorithm of Objective Functions and Constraints program

The Algorithm of Objective Functions and Constraints program optimises a power generation system by 
calculating objective functions and constraints.

BEGIN /* Algorithm of Objective Functions and Constraints */
Data: Power and technical data, the dt  discount rate and UL represents the life of the project (see Section 2.2.1.).
Input: the initial investment cost   IC USD , the production cost per unit of energy produced gp  

(see Section 2.7.).
Output: Objective and Restriction Functions U .
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Step 1: Equation 27 calculates the Capital Recovery Factor (Camargo, 2022; Camargo et al., 2024) and 
the generation cost   GC USD  are calculated in at a useful life UL of 30 years and a given discount rate ( dt ).
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[ ] [ ]
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 	 (27)

BEGIN /* Sort of particle X */
Step 2: Start Sort of the search vector X  (see Figure 2 to Figure 5).
Step 3: in the present work, Equation 28 is developed to calculate the obtained energy. To speed up the programme, 

the calculation is made with only one year to work with less data.
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  1 1  

1000

= =

= =
= == =

∑ ∑ Stm

Sem
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i Y
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U E kWh  	 (28)

Step 4: in the present work, Equation 29 and Equation 30 calculate the angular movement of the tracker tilt 
and orientation respectively (see Figure 1 to Figure 5, Section 2.2.1 and Appendix A Section A.1). Equation 31 
calculates the total energy consumed by this angular movement ( )1I YE u=∆   . To speed up the program, it is 

made with only one year to work with less data. The factors 
180  365

uβ∆
   and 

360  365
uγ∆
   are the proportion of 

energy expended, including the return to the starting point. It is estimated that the maximum energy invested 
should be 12% of the total energy produced. In addition, the movement of β  represents 40% of the energy cost, 
while the movement of γ  represents 80% of the energy cost.
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Step 5: in the present work, Equation 32 is improved to calculate the Net Present Value in 10 years 
(see Section 2.2.1). In this equation,   Y year  are the years,   dt u  is the discount rate and   UL year  represents 

the life of the project. In addition,   ECO u  represents the economic investment cost overhead compared to a 

fixed solar system and   GC USD  is the annual operating and maintenance cost. Finally, the panel loses 0.65% 

of energy produced per year (see Figure 1 to Figure 5 and Section 2.2.1. to Section 2.2.4.).
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∑  	 (32)

Step 6: in the present work, the term ( )( )5 4 ,= =U U X β γ  is the index related to the particle search vector 
which is used to obtain the hybrid dynamic space constraint (see Figure 1 to Figure 5).

2.2.9. Sort of particle X program

The Sort of particle X (see Section 2.2.11) program arranges the particle to obtain increasing or decreasing hourly 
angles as appropriate and to avoid unnecessary oscillations, advances or retreats. In addition, the inclination β  and 
orientation γ  angles are sorted according to the corresponding seasons of the year (see Figure 1 to Figure 5 and 
Appendix A Section A.1.1).

BEGIN /* Sort of particle X */
Input: Particle  X  corresponding to swarm (tilt β  and orientation γ ).
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Output: Sort of particle SortX  corresponding to swarm (tilt β  and orientation γ ).
Step 1: Obtain the tilt β  and orientation γ  from the search vector X. Then, in the present work, Equation 

33 sorts the tilt β  and Equation 34 sorts the orientation γ  from the search vector X.

( ) ( ) ( )( )
( ) ( ) ( )( )
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Step 2: The tilt sortβ  and orientation sortγ  are saved in the sorted search vector of PSO particle SortX .

2.2.10. Fuzzy decision making and fuzzy inference system programs

Fuzzy decision making: This program implements a fuzzy decision making approach to optimise a 
power generation system using lower and upper bounds on pre-defined objective and constraint indices. The 
( ),X ,i iβ γµ ξ  states are computed using an auxiliary variable iξ  that depends on whether it is a decrease or an 

increase. Then the search space bounds are computed at levels 4=m  and 5=m . Next, the objective function 
( )f X  is computed using the t-norm algebraic product, taking into account objectives such as net present value 

(NPV ), energy gained, energy invested, and the upper and lower constraints of slope (β ) and orientation (γ ). 
Finally, the fitness ( )f X  is returned, reflecting the optimisation of the system based on the fuzzy decisions.

BEGIN /* Fuzzy decision making with this new methodology */
Data: the lower LowU  and upper UpU  limits of the objective and constraint indices mU , Exponential 

Weights mEW  (AHP) and their maximisation ( 1=ξ ) or minimisation ( 0=ξ ) are defined according to 
Table 3 (see Section 2.2.1.).

Input: the objective and constraint indices U  (see Section 2.2.8).
Output: the fitness ( )f X  is returned, reflecting the optimisation of the system based on the fuzzy decisions.
FOR ( 1: 5=i ) DO
Step 1: Equation 35 calculates the fuzzy function mµ .
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Step 6: Equation 36 calculates the search space restriction for the attributes or objectives 4=i  and 5=i  
where the t-norm is used in an algebraic sum.
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Step 3: Equation 37 calculates the fitness fuzzy function ( )f X  using the algebraic product t-norm. 
The objectives are: NPV (1), energy obtained (2), invested energy (3), upper and lower constraints of β  (4) and γ  (5).

( ) 1 2 3 4 5    =f X µ µ µ µ µ  	 (37)

The Fuzzy inference system algorithm program (see Section 2.2.9. and Appendix A Sections A.2) takes two 
inputs: the day (m) and the hour (h). Firstly, the tilt angle should be smaller in summer than in winter. Secondly, 
the tilt angle should start high at dawn, decrease at midday and increase at dusk. Thirdly, the orientation of 
the panel should start with a negative angle towards the east and move to a positive angle towards the west. 
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It transforms these crisp inputs into fuzzy values using sigmoidal membership functions with categories such as 
very low, low, medium, high and very high. Fuzzy rules are then applied to combine the membership degrees of 
the inputs and generate fuzzy outputs for the tilt angle (β ) and orientation angle (γ ). The results are combined 
using the minimum fuzzy operator and finally obtained using the centroid method (Figure 1 to Figure 5).

BEGIN /* Fuzzy inference system algorithm */
Data: The centre parameters and standard deviations of the Gaussian function (see Appendix A Section A.2, 

Table A.1, Table A.2 and Table A.3). These are obtained through a process of trial and error and statistical data.
Input: day   m d  and hour   h h .
Output: Tilt angle (   radβ ) and Orientation angle (   radγ ).
Step 1: Equation 38 calculates the Gaussian fuzzy membership function (for the hour h) ( ), , , Low Up

FIS hh H Hµ σ  

and (for the day) ( ) , , , Low Up
FIS hm m H Hµ σ . Each input has a membership subjective valuation in categories 

(see Table A2 and Table A3 of Appendix A Section A.2).
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Step 2: The system’s rules are applied to combine the membership degrees of the inputs within each 
category (see Table A2), generating fuzzy output results for each one. These results are then combined using 
a minimum fuzzy logic operator.

Step 3: Finally, the fuzzy output values are transformed back into crisp values using a defuzzification 
method. The Centroid (Centre of Mass) calculates the centre of gravity of the fuzzy curve.

2.2.11. Hybrid fuzzy-rigid constraint particle swarm optimisation with constriction factor

This program implements a Hybrid Fuzzy-Rigid Constraint Particle Swarm Optimisation with Constriction 

Factor to optimise the proposed problem. It starts by initialising the positions 
  k
iX , the best local positions 

ib  and the best global position Gb , assigning random values or good initial values according to the designer’s 
criteria. For 200 iterations and 130 particles, a motion rule is applied to update the particle positions and velocities, 

constrained according to the search space constraints. At each iteration, the fitness functions 
   

 
 

k
if X , ( )if b  

and ( )Gf b  are calculated, evaluating the performance of the system and updating these positions based on 
these values. Finally, the programme returns the global best position, Gb , found by the swarm. All of these 
parameters are calibrated through a process of trial and error, based on statistical studies of the solutions obtained 
(see Figures 1 to 5). This is not developed here for reasons of space, but will be extended in future work.

BEGIN /* Hybrid Fuzzy-Rigid Constraint Particle Swarm Optimisation with Constriction Factor */
Data: weights 0.999=lw , 2.049= =C Sw w  and 0.729=χ  which are obtained by iterative trial and error. 

    I C Sw  serve to enhance the vector components of the velocity and the parameter χ  limits the resultant to 

achieve stability and convergence to good solutions (see Section 2.2.1.).
Input: Particle  X  (tilt β  and orientation γ ).
Output: global best solution Gb  and its fitness function 

( )Gf b
.

Step 1: Initialize 
  k
iX , Gb , ib  at zero, random values or a good value according to the designer’s criteria.

BEGIN /* Fuzzy fitness function */
Step 2: Start Fuzzy fitness function program and calculate fitness functions     

 
 

k
if X , ( )if b  and ( )Gf b .

FOR (( ) ( )  1: 200   1:130= ∩ =k i ) DO
Step 3: Equation 39 calculates the of motion of the particles 

  k
iX  in each iteration k and the next iteration 

1+k . These values are constrained by boundary mechanisms.
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Step 4: Apply both rigid and soft constraints to the particles, as illustrated in the Figure 1 to Figure 5.
BEGIN /* Fuzzy fitness function */
Step 5: Calculate fitness functions     

 
 

k
if X , ( )if b  and ( )Gf b  (see Section 2.2.10.).

Step 6: Equation 40 updates (if necessary) the best positions seen by the particles 
k

i b     and by the swarm 
k

Gb  .

( ) ( )1      +                    
> ⇒ = ∪ > ⇒ =               

k k k k
i i G Gi i i if X f b b X f X f b b X  	 (40)

2.3. Practical contributions of the proposed methodology

2.3.1. Simulation of the climatic conditions

Figure 7 in this section shows the hourly and seasonal variations in key meteorological data (average temperature, 
relative humidity and atmospheric pressure) for the provinces of La Rioja (LR), San Juan (SJ) and Entre Ríos (ER) 
over a ten-year period, as determined by the Radial Basis Function method (see Appendix A Section A.2.1.).

Figure 8 shows the hourly and daily changes in the atmospheric transmission coefficient ( TK ) and solar 
azimuth angle ( zθ ) in the aforementioned three provinces: La Rioja (LR), San Juan (SJ) and Entre Ríos (ER). 
As the temperature rises around midday, atmospheric pressure tends to decrease due to solar heating, as does 
relative humidity. This trend is more pronounced in the drier regions of LR and SJ, where temperature peaks are 
higher and there are stronger diurnal fluctuations in pressure and relative humidity. ER, by contrast, experiences 
more stable conditions, with higher average humidity and less variability in temperature and pressure. Based 
on the temperature map, ER has the lowest temperatures, followed by SJ. LR has the highest temperatures. 
In terms of atmospheric pressure, LR shows the lowest values, followed by SJ, with ER showing the highest. 
LR has the driest conditions in terms of relative humidity, with SJ intermediate and ER the wettest (see Table 5). 
These meteorological patterns significantly impact solar panel performance and are therefore incorporated into 
models of irradiance, energy yield, and dynamic optimisation constraints.

Figure 7. Average (in ten years) temperature, relative humidity and atmospheric pressure for the provinces of La Rioja, 
San Juan and Entre Ríos. 

Source: The authors.
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The top row shows the TK  values, which represent the proportion of extraterrestrial solar radiation that reaches 
the surface. These values have been adjusted to account for cloudiness, providing a more accurate reflection of 
actual atmospheric transmissivity conditions. SJ has the highest average TK  values, suggesting clearer skies and 
lower cloud cover. LR follows, and ER exhibits the lowest values, indicating more diffuse radiation. The bottom 
row shows the annual evolution of the solar azimuth angle. The general pattern remains consistent across the 
provinces, with the azimuth reaching its maximum positive and negative values at around solar noon in summer 
and winter, respectively. However, there are slight regional differences in azimuth behaviour, particularly in 
SJ, due to its geographic location and solar geometry. These variables are crucial for determining the optimal 
orientation of solar panels and for accurately modelling solar tracking systems.

2.3.2. Tilt angle (β ) and Orientation angle (γ ) of the solar panels

This section shows the colour bar graphs of tilt angle °  β  and orientation angle °  γ  of the solar panels 
for each day and each hour for the provinces of La Rioja (LR), San Juan (SJ) and Entre Ríos (ER), as well as for 
the different scenarios analysed (see Section 2.2.1.). All of these plotted angles adhere to the constraints set 
out in Section 2.2.9 and Appendix A Section A.1.1. This enables viable and feasible solutions to be analysed 
for the three provinces in question. For reasons of space, the cases or scenarios have not been plotted at fixed 
angles. Angles are given in degrees for ease of understanding.

The cases or scenarios plotted in this section are the follows (see Table 4 in Section 2.3.4.):

•	Case 5: Figure 9 shows a mixed case with manual movement of the panel inclination but automatic movement of 
the panel orientation at 15º, 30º and 45º and variable orientation according to the zenith angle of the sun °  zA .

•	Case 6: Figure 10 shows the case of a variable tilt angle and orientation according to the incidence angle °  zθ  
zenith angle of the sun °  zA . This case represents the automated control of the tracking system by complex 
embedded systems. This is the most efficient alternative (see Appendix A Section A.1.12) but, as will be shown, 
the most expensive.

•	 Case 7: Figure 11 shows a variable tilt angle and orientation according to a fuzzy inference system based on the 
developed fuzzy decision theory. This is an artificial intelligence-based system that takes into account the time of 
day. This system is simpler and cheaper than (3), and allows for less movement (see Section 2.3.4). Consequently, 
it will demonstrate lower energy consumption than the previous case.

Figure 8. Hourly and daily fluctuations in the atmospheric transmission coefficient and solar azimuth angle for the provinces of 
La Rioja, San Juan and Entre Ríos. 

Source: The authors.
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Figure 9. Case 5: Mixed fixed °  β  and variable °  γ  angles for all provinces. 
Source: The authors.

Figure 10. Case 6: Variable °  β  and °  γ  angles according to sun trajectory for all provinces. 
Source: The authors.

•	Case 8: Figure 12 illustrates a variable tilt angle and orientation based on a Gaussian Neural Network system. 
As in the previous case, this is an artificial intelligence-based system implemented according to day and time. 
This system is simpler and cheaper than (3) and allows less movement (see Section 2.3.4). Consequently, it will 
demonstrate lower energy consumption than the previous case.

•	 Case 9: Figure 13 shows a variable tilt angle and orientation according to the multi-objective fuzzy model that was 
proposed and solved using Particle Swarm Optimisation (PSO). As in the previous case, this implementation of a swarm 
technique is based on artificial intelligence and day and time. This system is simpler and cheaper than (3) and allows for 
less movement (see Section 2.3.4). Consequently, it will demonstrate lower energy consumption than the previous case.
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Figure 11. Case 7: Variable °  β  and °  γ . angles according to a fuzzy inference system for all provinces. 

Source: The authors.

Figure 12. Case 8: Variable °  β  and °  γ  angles according to a Gaussian neural network for all provinces. 

Source: The authors.

The radial neural network-based scenario (see Figure  12) is similar to the continuous motion scenario 
(see Figure 10), as both produce the most energy and therefore generate similar motions with some adjustments 
(see Section 2.2.2 and Section 2.2.4). Figure 13 shows the optimal scenario obtained using the fuzzy multi-objective 
model, which was solved using a hybrid constraint PSO with a constriction factor.

This scenario aims to maximise energy production while minimising motion and cost, in order to achieve 
the best possible net present value. Regarding the provinces, Figures 9 to 13 show that SJ has the greatest 
movement, followed by LR and ER, which exhibit similar levels of movement.
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This is because SJ has higher solar irradiance, so the metaheuristic deems it more profitable for the system 
to have greater movement. This will be demonstrated in the following sections. The results are logical and 
satisfactory, and are in line with reality. The equations developed in Sectn 2.3.4 are also verified.

2.3.3. Cosine of incidence angle and total solar irradiance

This section presents the colour bar graphs of ( )cos   uθ , , 2
 
 
 

kWG
m

β γ  and ,   R uβ γ  (see Section 2.2.5. 

to Section 2.2.6.) for each hour h and day m, with the corresponding inclination and orientation, from which 
the total solar irradiance for each city (La Rioja LR, San Juan SJ and Entre Ríos ER) is calculated. Angles 
are expressed in degrees for ease of understanding. These figures show the cosine of the angle of incidence 

( )cos θ  for each case studied, which depends on the angles of inclination β  and orientation γ , and which is 
proportional to proportional to the total solar irradiance ,Gβ γ  (see Equation 29). The cases or scenarios are 
the follows (see Table 4 in Section 2.3.5.):

•	Case 1: Figure 14 shows the case of a horizontal panel facing north.

•	Case 2: Figure 15 shows the case of a panel at 15º and facing north.

•	Case 3: Figure 16 shows the specific case of the voltage, current and power for a panel at 30º and facing north.

•	Case 4: Figure 17 shows the case of a panel at 45º and facing north.

•	Case 5: Figure 18 shows a mixed case with manual movement of the panel inclination but automatic movement of 
the panel orientation at 15º, 30º and 45º and variable orientation according to the zenith angle of the sun °  zA .

•	Case 6: Figure 19 shows the case of a variable tilt angle and orientation according to the incidence angle of 
horizontal panel ( °  zθ ) zenith angle of the sun ( °  zA ).

•	Case 7: Figure 20 shows the case of a variable tilt angle and orientation according to a fuzzy inference system 
according to the developed fuzzy decision theory.

•	 Case 8: Figure 21 shows the case of a variable tilt angle and orientation according to a Gaussian Neural Network system.

•	Case 9: Figure 22 shows the case of a variable tilt angle and orientation according to the multi-objective fuzzy 
model proposed and solved by the Particle Swarm Optimisation (PSO).

Figure 13. Case 9: Variable °  β  and °  γ  angles according to fuzzy multi-objective with hybrid constraint PSO with a 
constriction factor. 

Source: The authors.
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Figure 14. Case 1: ( )cos   uθ , , 2
 
 
 

kWG
m

β γ  and ,   R uβ γ  for all provinces. 

Source: The authors.

Figure 15. Case 2: ( )cos   uθ , , 2
 
 
 

kWG
m

β γ  and ,   R uβ γ  for all provinces. 

Source: The authors.

The value of ( )cos θ  is fundamental in understanding how a solar panel receives solar radiation. A high 
( )cos θ  indicates that radiation is striking the panel more directly (higher irradiance ,Gβ γ ), which translates 

to higher efficiency. In this sense, a panel with a low tilt β  (Case 1 or Case 2) will have a low ( )cos θ  (and low 
irradiance ,Gβ γ ), especially in winter when the sun is lower in the sky. On the other hand, a panel with a higher 
tilt β  (Case 3 or Case 4) will have a higher ( )cos θ  when the sun is closer to its zenith, such as in summer 
(see Section 2.2.6. to Section 2.2.8.).
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Figure 16. Case 3: ( )cos   uθ , , 2
 
 
 

kWG
m

β γ  and ,   R uβ γ  for all provinces. 

Source: The authors.

Figure 17. Case 4: ( )cos   uθ , , 2
 
 
 

kWG
m

β γ  and ,   R uβ γ  for all provinces. 

Source: The authors.

The factor 
,

,
0

=  
G

R u
H
β γ

β γ ​ (see Section 2.2.6.), which is the ratio between the irradiance in a particular 

scenario and the irradiance of a panel with no tilt and a north orientation (Case 1), shows how the tilt and orientation 
impact the panel’s efficiency. In Case 1 the value of the ratio is , 1=Rβ γ ​, indicating relatively low efficiency.
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Figure 18. Case 5: ( )cos   uθ , , 2
 
 
 

kWG
m

β γ  and ,   R uβ γ  for all provinces. 

Source: The authors.

Figure 19. Case 6: ( )cos   uθ , , 2
 
 
 

kWG
m

β γ  and ,   R uβ γ  for all provinces. 

Source: The authors.

On the other hand, in Case 2 to Case 9, the values of ,Rβ γ  tend to be higher in winter due to the smaller 
angle of incidence, and lower in summer when the radiation is more direct. Therefore, the effect of tilting and 
orienting the panel has repercussions on these three variables, increasing or decreasing them at each point 
according to whether the solar panel is well directed.

The cases in which the panel is oriented according to the sun’s path have a better efficiency with respect 
to this variable (Case 5 and Case 6). ,   R uβ γ  is low in summer and high in winter for all cases except in 

Case 1 (where 
,

,
0 ,

1= =  
G

R u
H
β γ

β γ
β γ

). This is because the ( )cos θ  and the irradiance ,Gβ γ  are high in summer 

and low in winter due to the effect of solar declination δ .
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Figure 20. Case 7: ( )cos   uθ , , 2
 
 
 

kWG
m

β γ  and ,   R uβ γ  for all provinces. 

Source: The authors.

Figure 21. Case 7: ( )cos   uθ , , 2
 
 
 

kWG
m

β γ  and ,   R uβ γ  for all provinces. 

Source: The authors.

Diffuse and albedo radiation also play a role and slightly offset this effect. As a result, the best case of 
the proposed scenarios is the Case 6 (see Figure 19), although this is the case with the highest costs and the 
Case 1 (see Figure 14) gives the three worst factors and therefore the worst profitability. Seasonality also plays 
a significant role, as solar declination changes throughout the year, affecting both ( )cos θ  and irradiance. 
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In winter, the sun is lower in the sky, reducing ( )cos θ  and consequently irradiance. In summer, however, the 
sun is higher in the sky, increasing ( )cos θ  and irradiance ,Gβ γ . This seasonal pattern directly influences the 
values of ,Rβ γ ​, which tend to be lower in summer and higher in winter due to the variation in the angle of 
incidence of solar radiation (see Section 2.2.6.).

In addition, the geographical location influences these variables and is critical in determining the optimal tilt 
and orientation angles for each site. These are latitude and longitude and their corresponding time difference), 
altitude, temperature and pressure (see Section 2.2.6. to Section 2.2.8.). Entre Rios is closer to the equator 
and has the higher ( )cos θ . However, it has denser clouds and lower altitude, so solar irradiance ,Gβ γ  is lower 
throughout the year. LR (and SJ compared to these two cases) is less close to the equator and has a lower 

( )cos θ . However, LR (and SJ compared to these two cases) has denser clouds and a higher altitude, so the solar 
irradiance ,Gβ γ  is lower throughout the year. Then, the panels in SJ and LR will be more efficient than those in 
Entre Rios, due to the greater amount of solar irradiance ,Gβ γ , especially during the summer (see Section 2.3.4.). 
As in Section 2.3.2, the boundaries defined by the calculated sunrise and sunset times are visible in all these 
figures. These times are calculated as discrete values because they have been rounded for use in the algorithms 
and they differ for the three provinces due to their different latitudes and longitudes (see Section 2.3.4.).

Taking into account these analyses and comparing the scenarios for the analysed provinces, the following results 
are obtained. Case 7 related to the fuzzy inference system (see Figure 20) provides intermediate values between the 
best and the worst scenario, aiming at a more balanced solution and is an intermediate scenario between the best 
and the worst scenario. Case 8 related to the radial basis neural network (see Figure 21) produced results similar 
to Case 6 related to the continuous motion (see Figure 19). Case 9, related to the HFRCPSO-CF (see Figure 22), 
optimises multiple objectives simultaneously and produces solutions very close to the optimal ones, but at a lower 
cost compared to continuous solar tracking systems (see Figure 19). These optimisation systems improve the 
performance of the solar panels by approaching the ideal results without the high costs associated with continuous 
solar tracking systems. Then, Case 9 provides an intermediate case, although, as will be shown in the following 
sections, it is very close to the best scenarios. It’s also important to note that at dawn and dusk, ( )cos θ  tends to 
zero, and hence ,Rβ γ  would tend to infinity. Then, it is limited to a minimum value of 0.1 (see Section 2.3.4.).

2.3.4. Voltage, current and power

In this section, Figure  17 to Figure  25 analyse the colour bar graphs for the variables Voltage   V , 
Current   A  and Power   W  for each hour h and day m (see Section 2.2.5. to Section 2.2.7.). It is with the 
corresponding tilt  °  β  and orientation °  γ , from which the total solar irradiance is obtained for each case 
and city (La Rioja LR, San Juan SJ and Entre Ríos ER). Angles are expressed in degrees for ease of understanding. 
The cases or scenarios are the follows (see Table 4 in Section 2.3.5.):

Figure 22. Case 9: ( )cos   uθ , , 2
 
 
 

kWG
m

β γ  and ,   R uβ γ  for all provinces. 

Source: The authors.
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•	Case 1: Figure 23 shows the case of a horizontal panel facing north.

•	Case 2: Figure 24 shows the case of a panel at 15º and facing north.

•	Case 3: Figure 25 shows the specific case of the voltage, current and power for a panel at 30º and facing north.

•	Case 4: Figure 26 shows the case of a panel at 45º and facing north.

•	Case 5: Figure 27 shows a mixed case with manual movement of the panel inclination but automatic movement of 
the panel orientation at 15º, 30º and 45º and variable orientation according to the zenith angle of the sun °  zA .

Figure 23. Case 1: Voltage   V , Current   A  and Power   W  for all provinces. 
Source: The authors.

Figure 24. Case 2: Voltage   V , Current   A  and Power   W  for all provinces. 
Source: The authors.
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Figure 25. Case 3: Voltage   V , Current   A  and Power   W  for all provinces. 
Source: The authors.

Figure 26. Case 4: Voltage   V , Current   A  and Power   W  for all provinces. 
Source: The authors.

•	Case 6: Figure 28 shows the case of a variable tilt angle and orientation according to the incidence angle of 
horizontal panel °  zθ  zenith angle of the sun °  zA .

•	Case 7: Figure 29 shows the case of a variable tilt angle and orientation according to a fuzzy inference system 
according to the developed fuzzy decision theory.

•	 Case 8: Figure 30 shows the case of a variable tilt angle and orientation according to a Gaussian Neural Network system.

•	Case 9: Figure 31 shows the case of a variable tilt angle and orientation according to the multi-objective fuzzy 
model proposed and solved by the Particle Swarm Optimisation (PSO).
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Figure 27. Case 5: Voltage   V , Current   A  and Power   W  for all provinces. 
Source: The authors.

Figure 28. Case 6: Voltage   V , Current   A  and Power   W  for all provinces. 
Source: The authors.

It can be seen from the figures that the Voltage   V  is relatively stable, with some fluctuations due to the climate, 
and varies slightly with the seasons, being low in summer due to the effect of the high ambient temperature eT  
and the increased temperature due to total solar irradiance ,Gβ γ  (see Section 2.2.5. to Section 2.2.7.), as well 
as the influence of the ambient humidity  %  SRH  taken into account. The Current   A  and Power   W  are 

therefore approximately proportional to the total irradiance (see Section 2.2.7.) and therefore to the ( )cos θ , 
which varies according to these two parameters and is influenced by cloud cover and the surrounding climate.
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Figure 29. Case 7: Voltage   V , Current   A  and Power   W  for all provinces. 
Source: The authors.

Figure 30. Case 8: Voltage   V , Current   A  and Power   W  for all provinces. 
Source: The authors.

The maximum current (and therefore power and energy) in all scenarios is higher in summer (20   A  in Case 1) 
than in winter (10   A  in Case 1).

However, by increasing the inclination without changing the orientation, the summer maximum is reduced and 
the winter minimum is increased, thus balancing the energy production curve and obtaining a stable production 
between 30º and 45º. This is because the angle of declination changes throughout the year, altering the angle of 
incidence and therefore solar energy production. Therefore, lower tilt angles are required in summer and higher 
tilt angles are required in winter, which was supported by the additional HFRCPSO-CF search space constraints.
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Figure 31. Case 9: Voltage   V , Current   A  and Power   W  for all provinces. 
Source: The authors.

As can be seen from these figures, the higher the cloud cover (see Section 2.3.1.), the lower the energy 
and power production, which has a direct impact on the efficiency and energy output of the system 
(see Section 2.2.5. to Section 2.2.7.). This highlights the importance of considering weather patterns and 
seasonal changes when designing and optimising solar energy systems, and the production system must 
take this into account when planning how to meet its energy needs based on this system. In regions such 
as ER, which have the lowest irradiance levels, higher temperatures and higher humidity, energy production 
is naturally reduced. The combination of climatic fluctuations and cloud cover also contributes to the 
variation in power output.

These factors need to be taken into account when planning how a solar system will meet energy needs, as 
fluctuations in weather patterns can lead to periods of underperformance. This highlights the need for effective 
forecasting tools and energy storage solutions to ensure a reliable energy supply, especially in regions with 
highly variable weather.

SJ has a higher and more consistent average yield throughout the year due to less influence from rainfall 
and weather variability. And LR has an intermediate production due to higher rainfall, rain, humidity and 
climatic fluctuations than SJ, although much less influence than ER. The mixed Case 5 (see Figure 27) of 
varying tilt angles by season follows this logic and improves production. The one with the best production 
(see Figure 28) is the one where the panel moves continuously according to the horizontal panel incidence 
angle and the azimuthal angle, as expected, although it is obviously the one with the highest associated 
energy and economic costs.

In the Case 7, the fuzzy inference system (see Figure 29) mimics this reasoning by looking for less motion 
and therefore lower energy cost, although it does not produce as stable an output as in Figure 28. Similarly, the 
radial based neural network (see Figure 30) presents an almost identical scenario to Figure 30, but with some 
adjustments. In the case of multi-objective particle swarm optimisation with fuzzy decision making (see Figure 31), 
an intermediate result of high and stable current, power and energy production is obtained. The HFRCPSO-CF 
searched for the best positioning for each day and time, which was as close as possible to the ideal case and 
minimised the proposed objective functions. As before, the three scenarios give similar results, with production 
varying due to weather conditions which impact current and power production.

The voltage also remained stable in all provinces and sceneries, regardless of the weather conditions, fluctuating 
between 45   V  and 50   V  in the three provinces. All scenarios give similar results, with production varying 
due to weather conditions which impact current and power production. Thus, good results are obtained for the 
variables analysed, which will be confirmed in Section 2.3.4. Future work can improve this proposal so that it 
deviates more from the ideal scenario, taking into account the other cases.
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2.3.5. Comparison of attributes for each case and city

Firstly, this section presents a comparison of attributes for each case and city: San Juan (SJ), La Rioja (LR) and 
Entre Ríos (ER). First, Figure 32 shows the irradiance ,Gβ γ  (see Section 2.2.6.) for the first six cases, excluding 
the effect of cloud cover (see Section 2.3.1). If the panel is not tilted and faces north, in summer and without 

weather variations, SJ has the highest maximum average daily irradiance with 20.48
 
 
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kW
m

, followed by LR with 
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.

In winter and without weather variability, LR has the highest minimum average daily irradiance with 
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 and ER with 
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. Secondly, Figure 33 then shows the 

irradiance , 2
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β γ  for these six cases, including cloud cover. If the panel is not tilted and faces north, in 

summer and with weather variations, SJ has the highest maximum average daily irradiance with 20.32
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followed by LR with 
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 and ER with 20.27
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. In winter and with weather variability, LR has the highest 

minimum average daily irradiance with 20.13
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Thirdly, Figure 34 shows the irradiance , 2
 
 
 

kWG
m

β γ  for all cases, including the effect of cloud cover. 

The presence of cloud cover reduces the solar energy by approximately 33%, adding to the variability and 
complicating the analysis. In addition, climatic factors add a noise to the average irradiance curve of about 
5 to 10%.

Figure 32. Daily solar irradiance ,Gβ γ  without weather variability. 
Source: The authors.
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Figure 33. Daily solar irradiance ,Gβ γ  with weather variability. 
Source: The authors.

Figure 34. Daily solar irradiance ,Gβ γ  of all cases with weather variability. 
Source: The authors.

Fourthly, these scenarios are then analysed in detail using a Net Present Value (NPV) to assess their economic 
desirability (see Figure 35). The NPV is in turn related to total irradiance and climatic factors. As noted earlier, 
increasing the tilt angle without adjusting the orientation reduces the summer maximum irradiance but increases 
the winter minimum irradiance, resulting in a more stable energy production curve between 30º and 45º tilt 
(Figure 27 and Figure 28). This is due to the changing angle of solar declination throughout the year, which 
changes the angle of incidence and therefore solar energy production.
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Therefore, smaller tilt angles are more effective in summer, while larger angles are better for winter, a finding 
supported by the PSO and further refined by additional search space constraints.

Fifthly, Table 7 compares all cases (see Section 2.3.2) and all provinces (all analysed cases across the provinces 
of SJ, LR and ER, under weather variability. It shows the absolute values of the OE, the IE and the NPV for all 
the cases proposed under weather variability across the three Argentinian provinces: SJ, LR and ER. Fixed-panel 
configurations (Cases 1 to 4) incur no investment costs (IE = 0%), but deliver lower OE and NPV. In contrast, 
the dynamic cases (Cases 5 to 9) incorporate solar tracking and artificial intelligence-based strategies, leading to 
substantial increases in energy production (see Table 7). Of these cases, Cases 6 (variable movement) and 8 (RBF) 
achieve the highest OE and NPV values across most provinces, albeit with moderate investment percentages 
(around 6%). Case 9 (HFRCPSO-CF) offers a favourable balance between performance and investment, with slightly 
lower costs and a high NPV. Notably, economic viability is strongly region-dependent: SJ and LR demonstrate 
significant economic returns under tracking systems, whereas ER, with lower irradiance, exhibits more modest 
gains, albeit still improved under intelligent tracking. Overall, this table highlights the effectiveness of adaptive 
tracking strategies in improving both OE and NPV.

Table 7 provides a summary of the relative percentage changes in relation to Case 1 (fixed horizontal panels) 
for all analysed cases across the provinces of SJ, LR and ER under weather variability. The attributes compared are 
OE, IE and NPV. It can be seen that energy output (OE) consistently increases with tracking strategies, especially 
in Cases 6 (variable movement), 8 (RBF) and 9 (HFRCPSO-CF), which show the greatest improvement. IE remains 
constant at 100% for all advanced cases relative to the fixed baseline, indicating that additional investment 
is required for movable systems. In terms of economic performance, the NPV significantly improves across all 
dynamic cases, particularly in SJ and LR, with gains of over 50% in most scenarios. ER shows a smaller, yet still 
positive, economic impact, likely due to its lower solar resource availability. Overall, the data demonstrates that 
incorporating intelligent and adaptive tracking strategies leads to substantial energy and economic benefits 
compared to the fixed-panel baseline.

From all these results, the following analyses are carried out, which are summarised in the conclusions.
Angles and irradiance: Figures 33 to Figure 35, Table 6 and Table 7 show that increasing the tilt angle 

reduces irradiance in summer and increases it in winter. This is due to the effect of solar declination caused 
by the movement of the Earth’s axis of rotation (see Section 2.3.1 to Section 2.1.2.). Among the fixed angles, 
Case 3 (inclination of 30°) has the best values that correspond to reality, as it is the angle considered optimal 
for these latitudes and it is also the one used for the installation of fixed solar panels. On the other hand, 
Case 5 (mixed changes) increases the energy produced by between 25% and 30% compared to Case 1 (horizontal panel). 

Figure 35. Net Present Value of all cases with weather variability. 
Source: The authors.
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Table 7. A comparison summary of all cases and all provinces with weather variability, showing values and relative percentage change: 
Obtained energy (OE), invested energy (IE) and net present value (NPV) for all cases and provinces.

Summary of values comparison

City Attributes Case 1 0º Case 2 15º Case 3 30º Case 4 45º Case 5 mixed Case 6 variable Case 7 FIS Case 8 RBF Case 9

SJ OE [kWh] 1638.2 1.764.7 1.812.8 1.785.6 2.135.6 2.240.6 1.958.9 2.227.8 2.100.3

LR OE [kWh] 1544.1 1636.0 1662.8 1626.4 1922.1 1999.5 1790.0 1989.3 1875.2

ER OE [kWh] 1302.4 1360.7 1372.6 1340.1 1524.9 1575.0 1450.2 1567.0 1501.4

SJ IE [%] 0.00 0.00 0.00 0.00 6.5 6.5 3.8 6.1 3.6

LR IE [%] 0.00 0.00 0.00 0.00 6.67 6.67 4.01 6.35 3.06

ER IE [%] 0.00 0.00 0.00 0.00 6.4 6.4 3.8 6.1 3.1

SJ NPV [USD] 618.4 913.2 1025.3 961.7 1457.7 1612.7 1178.0 1603.8 1499.2

LR NPV [USD] 482.8 697.0 759.3 674.5 1066.2 1164.6 873.4 1157.6 1112.4

ER NPV [USD] -7.5 128.3 155.9 80.2 282.9 341.3 196.4 337.3 338.3

Relative percentage change in relation to Case 1 (fixed horizontal panels).

SJ OE [%] 0.00 7.17 9.63 8.25 23.29 26.89 16.37 26.47 22.00

LR OE [%] 0.00 5.62 7.14 5.06 19.67 22.78 13.74 22.38 17.66

ER OE [%] 0.00 4.28 5.11 2.81 14.59 17.31 10.19 16.89 13.25

SJ IE [%] 0.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00

LR IE [%] 0.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00

ER IE [%] 0.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00

SJ NPV [%] 0.00 32.28 39.69 35.70 57.58 61.65 47.50 61.44 58.75

LR NPV [%] 0.00 30.73 36.42 28.42 54.72 58.54 44.72 58.29 56.60

ER NPV [%] 0.00 105.85 104.81 109.35 102.65 102.20 103.82 102.22 102.22

Source: The Authors.

However, Case 6 (continuous movement) receives the most solar radiation and therefore produces the most 
energy, increasing the energy produced by between 30% and 50% compared to Case 1 (horizontal panel). 
The cases based on AI techniques correspond to intermediate cases between these cases, where Case 8 (RBF) 
is closer to Case 6 (higher irradiance continuous motion). However, the HFRCPSO-CF obtains lower energy and 
economic profitability but invests less energy in turning the panels. This is interesting since it requires lower 
investment, operation and maintenance costs.

Regional analysis and climatic factors: Table 6 to Table 7 show the energy obtained (kWh), the energy 
invested (%) and the NPV (in USD) for three provinces (SJ, LR and ER) in different cases. For ease of reference, 
the abbreviations of these provinces are used. As explained in Section 2.3.2. and Section 2.3.3. geographical 
location influences energy production, depending on latitude, longitude, altitude, climatic factors, pressure, 
rainfall, etc (see Appendix A Section A.2.1.). In this sense, SJ has the highest energy obtained and the highest 
NPV compared to the other provinces, indicating a higher profitability. LR has intermediate results, with a lower 
energy yield and NPV than SJ. Finally, ER has the lowest values for energy produced and NPV, indicating lower 
profitability due to less favourable conditions. The variability of the invested energy ranges from 0% to 6.67% 
for all provinces. Radiation variability in LR, SJ and ER is influenced by climatic factors such as cloud cover, 
temperature, humidity and seasonal changes. SJ has a more stable and consistent energy production due to its 
lower climatic variability and minimal rainfall. LR has an intermediate energy production, as it is affected by 
higher rainfall and climatic fluctuations. ER, on the other hand, has the lowest solar energy production due to 
higher humidity, frequent rainfall and greater climatic instability, resulting in lower yields during certain periods. 
These variations highlight the need for reliable forecasting and energy storage solutions, particularly in regions 
with greater climatic uncertainty, to ensure a consistent energy supply.

Regional analysis and Net present value: Table 6 and Table 7 show that the most profitable case in 
terms of NPV (Figure 35) is continuous panel movement (Case 6), while the least profitable case is a static 
north-facing panel with no tilt. Increasing the tilt angle to 30° does not improve profitability because the 
energy gains in winter offset the losses in summer. Beyond this angle, however, summer energy losses outweigh 
winter gains, reducing overall profitability. This has significant implications for the economic viability of the 
analysed scenarios. SJ is the most profitable and has the shortest recovery time, followed by LR and then ER. 
These differences are due to the varying levels of irradiation, influenced by each region’s geographical location 
and climatic conditions. Consequently, solar energy projects are more profitable in SJ and LR than in ER 
(see Appendix A Section A.2.1.).
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Artificial Intelligence Analysis: Case 7 (FIS), Case 8 (RBF) and Case 9 (HFRCPSO-CF) show an interesting 
trend in the relationship between regions and attributes. SJ continues to show the highest performance in terms 
of energy obtained and net present value, compared to LR and ER, although the difference in energy obtained 
is reduced in the cases 8 and 9. The energy invested in these cases shows a slight variation in all provinces, with 
higher values in SJ and LR (6.1%-6.7%), as opposed to ER, which has lower values (3.1%-3.8%). Although ER has 
a relatively low yield in terms of NPV and energy obtained, the energy invested does not increase significantly, 
reflecting a lower efficiency in converting the energy invested into economic value. This suggests that climate 
and infrastructure conditions in ER may limit the performance of solar projects compared to the other regions, 
especially in Case 7, Case 8 and Case 9. The FIS (Case 7) and the RBF (Case 8) provide irradiance values ( ,Gβ γ ) 
that closely match the results obtained using continuous solar tracking.

The HFRCPSO-CF is the most satisfactory option, offering an intermediate solution that closely resembles 
higher energy production scenarios while minimising energy and economic costs (see Figure 27, Figure 28 and 
Figure 29, respectively). The HFRCPSO-CF offers a similar level of profitability to that of continuous motion, 
but at a lower cost for mixed motion tracking. It provides a balanced, intermediate solution that ensures stable, 
high energy production while minimising costs. In terms of energy invested, it effectively searches for optimal panel 
positioning each day and at each time by minimising objective functions. Additionally, it reduces energy investment 
by 48–52% compared to the other cases. However, the energy payback is 4–5% lower than for RBF (Case 8) and 
continuous motion (Case 6). In this sense, an improvement in profitability is observed in ER. Intermediate solutions 
are obtained using the HFRCPSO-CF, which can be modified by adjusting the EW constraints according to energy 
needs within the production chain. Consequently, the energy gains of the AI-based scenarios range from 13% to 22%, 
the economic benefits range from 56% to 102%, and the IE decreases by 48–52% compared to Case 1.

These results are consistent with existing data and software simulations (see Section 2.2.1), with an acceptable 
margin of error of 3–5%. Future work will employ statistical tests, such as the Wilcoxon signed-rank test. 
These will be used to compare the current proposals with other available and experimental artificial intelligence 
techniques at a given level of confidence. This was not done in the present proposal due to space limitations 
and the desire to provide a thorough explanation of the methodology. This will allow sensitivity, statistical 
analysis and further scenarios to be explored by varying these parameters and examining their impact on the 
results. While the enhancements solved the problem, they increased execution time by between 30% and 50%, 
and can be developed and improved in future research.

3. Conclusions

This paper presents an innovative multi-objective optimisation methodology using artificial intelligence 
techniques, applied to the optimal orientation and inclination of photovoltaic panels within the Argentinean 
production chain. It considers technical, economic and environmental aspects, all within a framework of 
uncertainty and hierarchical evaluation.

The proposed methodology addresses the next challenges (see Table 1 to Table 4):

(1)	 The inadequate use of artificial intelligence tools in solar tracking optimisation has resulted in solutions that 
do not reflect decision-makers’ preferences, handle uncertainty inadequately, and lack metric compatibility and 
hierarchical analysis across multiple indices.

(2)	 Determining the optimal tilt and orientation of dual-axis solar tracking systems is difficult because of the dynamic 
inefficiencies involved, which significantly increase the complexity of mathematical modelling.

(3)	 Standard PSO metaheuristics may converge on suboptimal solutions, or solutions that violate technical or 
economic constraints. This is particularly the case in the context of dual-axis tracking problems.

(4)	 These limitations are inadequately addressed by existing studies, particularly in the analysed regions of Argentina.

Methodological originality (see Table 1 to Table 4):
The novelty of the present methodology consists in:

(1)	 It improves, combines and compares mathematical modelling, artificial and swarm intelligence for multi-criteria 
optimisation, as well as for metaheuristic models and embedding hybrid constraints and tracking cases.

(2)	 It identifies and addresses theoretical, methodological and practical gaps in Argentina and other under-explored 
regions, providing decision-makers with a feasible, intermediate solution.
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These two aspects are covered in the following points:

•	 The development and combination of different artificial intelligence techniques to optimise and compare scenarios 
applied to the motion of a solar system.

•	The development and combination of available mathematical models with multiple indices and the 
metaheuristic program with a hybrid Particle Swarm Optimisation with Constriction Factor and Fuzzy Decision 
Making Optimisation.

•	 The previous points were used to obtain the parameters of the problem: weather conditions, generation costs and 
prices from the productive chain (see Figure 1 to Figure 5 and Section 2.3.1).

•	Hybrid dynamic constraints and multi-objective fuzzy-guided feedback were incorporated both in the techniques 
used and in the models proposed in order to obtain technically and economically feasible solutions and to help 
the methodology to find better solutions.

•	 The combination of all these strategies, together with the models and results obtained, supports the novelty of 
the present proposal. The aim was to obtain quality solutions intermediate between the results obtained with 
horizontal panels (or the worst sceneries) and those obtained with automatic mobile panels (the best sceneries).

In summary, the proposed methodology not only improves the performance of solar systems under realistic 
conditions and multiple constraints, but also provides an adaptable framework for decision making under uncertainty. 
In the long term, this approach is expected to be extended to other energy sectors and regions, contributing to 
the development of intelligent decision support tools for sustainable energy planning in developing countries.

Research method (see Figure 1 to Figure 5 and Section 2.3.1):

(1)	 Novel modelling, simulation and optimisation using multi-criteria metaheuristic optimisation techniques 
with scenario comparison and improvement, validation of provinces and extremal scenarios and dual-axis 
solar tracking mathematical model (fixed and mobile cases). A new methodology has been developed that 
incorporates a multi-criteria evaluation of this problem, as well as hybrid-optimised dynamic energy and 
economic constraints. It has been enhanced with an improved hybrid PSO based on constraints with boundary 
reflection.

(2)	 Novel hybrid fuzzy decision models, analytic hierarchy process, radial basis function neural networks and particle 
swarm optimisation with a constriction factor, dynamic boundary constraints and reflection, as well as a hybrid 
fuzzy-guided feedback system for multi-criteria optimisation.

•	Most studies use subjective and arbitrary weights or simplified cost models. In the present methodology, the 
parameters are determined iteratively and holistically by adjusting them and analysing the results obtained using 
the methodology.

•	 This is achieved within a unified system that dynamically adjusts solar tracking strategies based on weather data and 
input parameters. Future papers will expand on this by exploring more automated ways to adjust the parameters 
and identifying better solutions.

•	 The fuzzy decision-making system is enhanced with AHP weighting and hybridized multi-criteria hybrid PSO with 
neural networks and swarm intelligence, enabling adaptability and robust optimization in this complex problem. 
In this sense, our approach involves studying three cases of Argentine provinces, which makes the solutions more 
realistic and practical.

(3)	 A survey based on data obtained through the present line of research: government and meteorological station 
data, manufacturer data and independent research. The data source used for the article was presented and figures 
were added based on the simulation of average meteorological conditions over ten years (not for all years, to avoid 
exceeding the page limit).

Main theoretical contributions (see Table 1 to Table 4):

This methodology not only improves the efficiency of Argentina’s energy production, but also provides 
an adaptable framework for addressing global energy issues. It uses strategies based on swarm intelligence, 
techniques based on human reasoning and how the brain works to find the best solutions to difficult problems.
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1)	 Artificial Intelligence: This study employed advanced artificial intelligence techniques to address the issue 
of optimising solar panel tilt angles and compare different scenarios. Specifically, swarm intelligence-based 
techniques were employed to direct the search process within the solution space, thereby minimising constraint 
violations over time. To this end, a hybrid PSO with a constriction factor and dynamic boundary reflection was 
employed to ensure convergence within feasible regions (see Figure 1 to Figure 5). Additionally, a fuzzy inference 
system was implemented to incorporate fuzzy constraints into the decision-making process, thereby improving 
the accuracy of the results. This combination of techniques enables more efficient, appropriate solutions to be 
found that can adapt to the dynamic conditions of the solar environment (see Figure 1 to Figure 5).

2)	 Mathematical modelling with algorithms and schematics of programs used with AI tools: Firstly, an exhaustive 
literature review was conducted to investigate the key equations governing the energy production and tilt angles 
of biaxial solar panels, focusing on the relationship between irradiance and both tilt and orientation angles. 
This analysis revealed the complexity of the relationship, largely due to inconsistent conventions for the signs 
and reference axes of the angles. Secondly, the equations were iteratively refined and verified using graphical 
methods with specially developed software. While existing models often depend on specific panel orientations 
and tracker types, this study developed a more general equation, deliberately omitting these specifics for 
clarity. Thirdly, mathematical modelling was used to identify optimisation indices, with a compromise solution 
achieved through fuzzy decision theory. The prioritisation of these indices was managed using exponential 
weightings, adjustable to meet different requirements. Fourthly, artificial intelligence techniques based on 
swarm intelligence and techniques based on human reasoning were integrated to optimise search and parameter 
tuning, significantly improving the accuracy of irradiance predictions and solar panel performance. In this 
sense, computational tools were further used to refine the models, with graphical verification to fine-tune 
the equations (see Figure 1 to Figure 5).

3)	 Mathematical Models and Optimisation of Indices in the Study: The mathematical models describing the 
relationship between irradiance and solar panel angles were derived and analysed in detail. A major focus was on 
optimising the indices governing these relationships to improve the performance of solar tracking systems. Instead 
of relying on the anisotropy index, simpler, more accessible indices were introduced to calculate total irradiance 
more efficiently. These models were adapted through an iterative process, incorporating various constraints and 
conditions to optimise tracking angles and maximise energy production. By refining the mathematical models 
and adjusting the indices accordingly, the overall performance and efficiency of the solar tracking system was 
significantly improved (see Figure 1 to Figure 5).

4)	 Incorporating Climatic Factors Using the Neural Network: The models were extended to include climatic 
factors such as temperature and relative humidity, which directly affect the efficiency of the solar panels. The 
neural network was used to integrate these factors into the mathematical models, allowing the performance 
coefficients and parameters of the solar panels to be adjusted. Temperature affects performance by changing 
voltage, current and power coefficients, while relative humidity affects efficiency through vapour saturation 
effects. By incorporating these factors into the model, more accurate approximations were achieved, allowing 
better simulation of real-world environmental conditions. The optimal results of artificial intelligence techniques 
lie between the worst and best scenarios (see Figure 1 to Figure 5).

Main practical results:
Parameters: The parameters used in this methodology were obtained from four clearly defined sources.

(1)	 Government (Argentina, 2025a, b; Compañía Administradora del Mercado Mayorista Eléctrico, 2025) and data 
from governmental and private meteorological stations (Entre Ríos, 2025; La Rioja, 2025; San Juan, 2025; 
Meteored, 2025; Meteoblue, 2025; WeatherSpark, 2025; Straffelini  et  al., 2023; Ovando  et  al., 2021; 
Palmero et al., 2022).

(2)	 Technical specifications from regional manufacturers, industry and software (Ichi, 2025; National Renewable 
Energy Laboratory, 2025; Hoseinpoor  et  al., 2020, National Instruments, 2025; Photovoltaic Geographical 
Information System, 2025; Ré et al., 2021; Ceballos et al., 2023; Ortega et al., 2024).

(3)	 Results from our own experimental and methodologic work (Camargo, 2022; Camargo et al., 2024; Sarroca et al., 2024).

(4)	 Reviewed literature, as clarified in the provided tables (see Table 1 to Table 4).
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Comparison of Scenarios for Three Studied Provinces: Finally, comparisons were made between the 
scenarios studied in three different provinces (San Juan SJ, La Rioja LR and Entre Ríos ER) to evaluate how 
the results varied according to climatic conditions and different solar tracking models. The following cases or 
scenarios are studied for these provinces:

•	Case 1 to Case 4 (fixed panels): North-facing horizontal panel (Case 1), 15º panel facing north (Case 2), 30º panel 
facing north (Case 3), 45º panel facing north (Case 4).

•	Case 5: Mixed case with manually adjustable inclination and variable orientation according to the zenith angle 
of the sun zA .

•	Case 6: a variable tilt angle and orientation according to the angle of incidence zθ  and zenith angle of the sun zA .

•	Case 7: a variable tilt angle and orientation according to a fuzzy inference system.

•	Case 8: a variable tilt angle and orientation according to a Radial Basis Function (RBF) Neural Network system 
(see Section 2.2.2 and Section 2.2.4).

•	Case 9: a variable tilt angle and orientation according to The multi-objective fuzzy-guided feedback system solved 
by the hybrid Fuzzy Particle Swarm Optimisation with constriction factor (HFRCPSO-CF).

For each scenario, various factors such as inclination and orientation angles, the cosine of the angle of 
incidence, irradiated energy, Obtained Energy (OE), Invested Energy (IE) and the Net Present Value (NPV) are 
analysed and compared. This comparison provided valuable insights into the effectiveness of the optimisation 
strategies and the impact of climatic factors on energy production. Climatic conditions were found by a RBF 
neural network to have a significant impact on system performance, highlighting the importance of tailoring 
models to the local characteristics of each city to achieve optimal results.

Firstly, Figures 9 to Figure 13 analyse the inclination and orientation for each hour and day, showing how 
the total irradiance is obtained. Secondly, Figure 14 to Figure 22 explore the cosine of the angle of incidence 
and the total irradiance on the panel, with corresponding inclination and orientation values for each hour and 
day. Thirdly, Figures 23 to 31 display the voltage, current, and power data for each hour and day, based on the 
inclination and orientation. Fourthly, Figures 32 to 35 summarize the main attributes for all cases and provinces 
analysed (LR, SJ and ER). Increasing the tilt angle improves the energy efficiency up to a tilt angle of 30° 
(Case 3), as the energy gain in winter compensates for the energy loss in summer (see Figure 35). Beyond 30°, 
however, this compensation effect diminishes and the energy loss in summer outweighs the energy gain in 
winter. This finding is crucial for assessing the economic viability of different tracking cases.

Climatic Factors and Regional analysis: This comprehensive analysis of solar energy production in different 
regions demonstrates the impact of climatic factors and tracking systems on solar performance. It also highlights 
the potential for optimisation and improvements to solar energy systems in the future. Although the inclusion 
of climatic factors is still under discussion, this study has incorporated estimates of factors such as humidity, 
pressure (due to altitude) and temperature variations into the model. These factors have been considered for 
their influence on energy production, and further investigation is warranted. Future research could build on this 
work by exploring additional models that better integrate these climatic aspects (see Section 3.2.1). Solar energy 
production in the LR, SJ and ER regions is significantly influenced by the variability of solar radiation, which is 
in turn influenced by climatic factors such as cloud cover, temperature and humidity. SJ has the most stable and 
consistent energy production due to its relatively low climatic variability. LR has intermediate energy production, 
influenced by higher rainfall and greater climatic variability. ER has the lowest solar energy production due to 
its high humidity and frequent rainfall, which cause greater climatic instability (see Appendix A Section A.2.1).

In terms of solar radiation and weather variations, if the panel is not tilted and faces north, SJ has the 
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. As can be seen in Figure 27 to Figure 29, the presence of cloud 

cover reduces radiation by around 33%, adds variability to the analysis.
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In terms of profitability and recovery time, SJ stands out with the highest profitability (Figure 35) and the 
shortest recovery time. LR follows, while ER has the lowest profitability due to lower solar radiation, higher 
humidity, frequent rainfall and increased cloud cover. Even in the optimal scenarios, solar energy projects are 
more profitable in SJ and LR than in ER. They highlight the importance of integrating forecasting tools and 
energy storage solutions, especially in areas such as ER, where high climatic variability makes it more difficult 
to maintain a stable energy supply. These results are consistent with real data validated by external studies and 
independent software tools (see Section 2.2.1.).

Energy and economic gain: The scenario involving continuous panel movement (Case 6) is the most 
energy-efficient (but most expensive), while the scenario involving a fixed north-facing panel with no tilt (Case 1) 
is the least efficient (but least expensive). The main results show that the HFRCPSO-CF (Case 9) significantly 
improves the energy efficiency, with increases ranging from 13% to 22% compared to the fixed horizontal 
panel (Case 1). Notable economic gains are also achieved in Case 9, with NPV increases ranging from 56% 
to 102%. Case 9 also reduces energy investment by between 48.2% and 51.8% compared to the other cases. 
However, the energy gain is approximately 4–5% lower than for the neural network (Case 8) and continuous 
motion (Case 6). The importance of reducing energy investment, even if this results in slightly lower energy 
gains, lies in the lower initial cost, which can be adapted to site-specific needs. Furthermore, energy investment 
was reduced more significantly than the slight losses in efficiency and profitability. Intermediate solutions were 
obtained using HFRCPSO-CF in this sense, and these can be adjusted by modifying the exponential weight 
constraints according to the user’s energy priorities. These findings confirm the potential of AI-based techniques 
in dual-axis solar tracking systems in Argentina, providing valuable insights for theoretical advancement and 
practical deployment in the renewable energy sector.

Validation: The validation of the results obtained showed an error of between 3% and 5% with respect to 
alternative software (see Section 2.2.1.). For reasons of space, this analysis has not been included, but will be 
developed in future articles. The results of the analysis are logical, satisfactory and consistent with real data 
from the regions studied, validating the proposed methodology. On the other hand, Figures 33 to Figure 35, 
Table 6 and Table 7 show that increasing the tilt angle reduces the irradiance in summer and increases it in 
winter. This is due to the effect of solar declination caused by the movement of the Earth’s axis of rotation. 
Of the cases with fixed angles, Case 3, with an inclination of 30°, has the best values. This corresponds to 
reality, as it is the angle considered optimal for these latitudes. It is also the one used for the installation of fixed 
solar panels. Case 5 (mixed changes) increases the energy produced by between 25% and 30% compared to 
Case 1 (horizontal panel). On the other hand, case 6 receives the most solar radiation and therefore produces the 
most energy, increasing the energy produced by between 30% and 50% compared to a horizontal panel (Case 1).

Advantages, disadvantages and limitations: The present methodology successfully incorporated several 
techniques to optimise and compare results for a complex problem, avoiding oversimplification. There was 
no need to transform the equations into linear functions, and the most accurate, cutting-edge models were 
employed. However, due to the nature of strategies based on swarm behaviour, several constraints had to be 
added to obtain simple, feasible solutions and guide the algorithm more effectively. Swarms tend to become 
trapped in local optima (good solutions, but not the best), from which it is difficult to escape. While the 
proposed improvements solved this problem, they also increased the length of the algorithm and its execution 
time by between 30% and 50%. The RBF is an additional optimisation that must be computed externally and 
only once to obtain the necessary parameters. Similarly, the RBF must be computed externally and only once 
to obtain the necessary parameters for the proposed multi-objective model. Otherwise, it would not be possible 
to execute the programme of the proposed methodology within a reasonable timeframe.

Despite its strengths, the proposed methodology has several limitations. Firstly, it is only applicable to the 
Argentinian regions that were studied, and adjustments may be required for different climates or regulatory 
contexts. The simulation does not consider climate change events. The focus is on dual-axis tracking systems. 
In this context, this model cannot be applied to single-axis systems without being redesigned first. Secondly, 
the adaptability of the model depends on the availability of local data and the preferences of decision makers, 
which may necessitate the re-training of neural networks and the recalibration of fuzzy weights. Thirdly, the 
methodology is computationally intensive due to the hourly simulations conducted and the hybrid nature of the 
metaheuristic. The methodology is applied to optimisation using hourly and daily data from the last 10 years. 
This requires significant computational resources for full optimisation. Therefore, for real-time applications, 
other methodologies can be used instead. Finally, while the model performs well in simulations, its effectiveness 
in real-world deployments has yet to be validated experimentally. The parameters and constraints used for the 
search space and HFRCPSO-CF may affect the outcome of the problem in question. Using these constraints may 
result in promising solutions for a given time and date being overlooked. However, the constraints successfully 
guided the algorithm to find feasible and viable solutions, eliminating the need for more complex strategies.
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In this context, the scope, adaptability and computational demands of both the Gaussian FIS and the 
RBF are limited. Their accuracy depends on the availability and quality of climatic and operational data, and 
they require recalibration when applied to regions or conditions not represented in the training set. They are 
less adaptable when facing extreme or atypical scenarios, which can reduce performance. Furthermore, while 
inference times are low, the parameter tuning and training phases, especially when working with large datasets 
and multiple variables, are computationally intensive, which could restrict their use in real-time or in contexts 
with limited resources. Future work should therefore focus on improving robustness and adaptability to diverse 
environmental conditions, while reducing computational costs.

However, the method is flexible and scalable and can be applied to several related problems, as explained below.
Future Implications: This study presents a flexible and scalable methodology that can be applied to a 

variety of public and private energy projects. The aim is to accelerate the return on energy investments and 
reduce costs. Designed for the Argentine production system, the methodology incorporates advanced artificial 
intelligence tools to address complex energy challenges in different climates. This approach can also be adapted 
for use with other renewable energy applications, such as wind farms, hydroelectric generation and biomass. 
It has already been simplified and applied in related research to optimise investments across energy sources by 
integrating the production chain (Camargo, 2022). Future work will seek to refine this methodology by exploring 
new variants of swarm intelligence, incorporating more intricate models for solar irradiance estimation and 
leveraging real-time weather data to enhance optimisation. Statistical validation methods such as the Wilcoxon 
signed-rank test will be employed to compare the performance of the proposed methodology with that of 
alternative AI techniques at a given confidence level. Although this analysis is not included in the current version 
due to space limitations, it will be expanded in subsequent studies. All AI technique parameters were calibrated 
through trial and error based on a statistical evaluation of the solutions. Although not detailed here for brevity, 
future research will include sensitivity and statistical analyses to examine the impact of parameter variations 
and allow further scenario exploration. Weights used in the decision-making process can also be adjusted to 
reflect site-specific conditions and improve results further.
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Appendix A. Mathematical modelling, Radial Basis Neural Networks and Gaussian Fuzzy 
Inference System parameters

A.1. Mathematical modelling

Mathematical modelling of the relationship between irradiation and solar panel tracking angles (tilt and 
orientation) reveals a significant divergence from the equations proposed in previous studies. Despite extensive 
efforts to develop accurate formulations, significant variability in the results is evident throughout the 
literature (Ahamed et al., 2021; Wu et al., 2022; Kuttybay et al., 2024; Zou et al., 2024; Sameera et al., 2024; 
Azam et al., 2024; Molu et al., 2024; Sobirov et al., 2023), highlighting the complexity of this interaction. 
The developments presented in this work and in the supplementary material are based on these references, while 
also incorporating mathematical improvements that enhance the models’ accuracy and adaptability to different 
conditions. Due to space constraints, detailed derivations for each cited work are not included here, but their 
contributions are embedded within and expanded upon in the proposed methodology.

The main technical data of the solar system are as follows:

,  d it  Discount rate of the solar system: 0.08 (8%) and Annual inflation rate: 0.0065 (6.5%).

,    Bk q  Bolztman constant: 
J0.0138

ºK
 
 
 

 and Electron Charge: 191.602 10 C−⋅   .

,   sa N  Ideality factor (1.0531 u   ) and Number of cells (132 u  ).

maxP  Installed power of the solar system: 1000   W  with a Useful Life (UL) of 30 Years  .

,   s shR  Resistance Series 0.39381   Ohm  and Shunt resistance 313.05   Ohm .

V  Photovoltaic system voltage: between 0   V  and 50   V .

NOCT  Nominal Operating Cell Temperature (45 C° ) when 
21

 
=  

 
ref

kWG
m

, 25 = °eT C and wind speed of 1 m
s

.

A.1.1. Direct and diffuse solar irradiance and dynamic search space constraint

Direct bH  and diffuse dH  solar irradiance: Equation A1 shows the rate   f u , clearness rate bR  and the 
index of anisotropy   iA u . Where bH  is the Direct Irradiance and dH  is the Diffuse Irradiance. The variable bH  
is the amount of solar power that reaches a surface directly per unit area, without being scattered or absorbed by 
the atmosphere. dH  is solar energy that has been scattered by molecules, aerosols or clouds in the atmosphere 
coming from all directions in the sky. They depend on factors such as cloud cover, atmospheric conditions and 
latitude (Sobirov et al., 2023; Wu et al., 2022; Azam et al., 2024). In addition, a development is made that 
eliminates anisotropy iA , which is very difficult to obtain.
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Best energy efficiency: This work, Equation A2 proposes the following practical theoretical analysis to 
obtain the constraint of the search space and the values of the angles maxβ  and maxγ  that maximise the energy 
obtained and minimise the cost.
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Equation A3 has been obtained mathematically and graphically. In this sense, the angles °  zθ  and °  zA  
are used as the most conservative choice. This means that if the tracker can be moved permanently, without 
considering the energy and economic costs, it is optimal to track the sun according to the angle of incidence of 
a horizontal plane facing north zθ  and the azimuth angle of the sun zA . Although this solution is the costliest 
in energy and economic terms and the least efficient, it is the limit that can obtain the most energy and is used 
to calculate the fuzzy limits of the proposed optimisation model.
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Search vector improve: Analysing Equation A3 gives the slope analyses in Equation A4 and Equation A5. 
This aspect is difficult to detect by the HFRCPSO-CF, resulting in the existence of peaks that are difficult to 
eliminate without a high computational cost. As a result, the optimisation would take too long.
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Therefore, a sorting function is performed, taking into account these specifications, to obtain a vector that 
meets the technical requirements, to facilitate the search, to further reduce the search space and the execution 
time, and to obtain better solutions. In addition, the search vector can be considerably reduced by considering 
only the hours in which there is sunlight, for which some algorithms are designed. As a disadvantage, this process 
can distort the solution obtained, so that good solutions are lost (with respect to a certain instantaneous index 
in a day and an hour), which can be analysed in future work.

Dynamic search space constraint: then, Equation A6 gives the upper and lower limits of °  β  and °  γ  
(see Section 2.2.1.).

( ) ( )45 15 15  90 90 90 90≥ + ≥ ≥ ∩ ≥ + ≥ ≥ − ≥ −z z zA Aθ β γ  	 (A6)

β  is constrained to the range 15,  45   and γ  to the range 90,  90−  . Within this set, β  is constrained to 

the range 15, 15+  zθ  and γ  to the range 90,  90− +  z zA A . These ranges are obtained by studying the 
efficiencies of the solar panels with different inclinations and orientations (see Section 2.2.1). Then, two fuzzy 
ramp functions for β  and γ  are used to satisfy this equation. For the tilt angle, the first constraint considers 

0=ξ  and restricts the movements between the range ,  15+  z zθ θ , aiming to be as close to zθ  as possible. 
The second constraint considers 1=ξ  and restricts the movements between the range 15,    zθ , also trying to 
be as close as possible to zθ . The best and worst case scenarios are used to calculate the respective best and 
worst indices associated with the attributes to be optimised and the search space constraints (see Section 2.2.8 to 
Section 2.2.11). The maximum, minimum and average restrictions β  and γ  are obtained from an analysis of 
radiation maps produced by this model. These maps show that for β  between 45° and 60°, a higher level of 
energetic irradiance is not achieved; rather, it decreases. The minimum restriction of 15° was determined by 
calculating the minimum viable inclination to prevent water accumulation on the panels, which could affect 
their performance. A safety factor was applied to this calculation. β  and γ  are intended to have a maximum 
difference of 90° with respect to the sun’s orientation, and these limits are defined accordingly.
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A.2. Radial Basis Neural Networks and Gaussian Fuzzy Inference System parameters

Radial Basis Function (RBF): Table A.1 summarises the key parameters used to train the Radial Basis 
Function (RBF) neural networks within the proposed methodology. The input variables are the hour of the day, 
the day of the year, air temperature (T ), dew point temperature ( dT ), and cloudiness factor ( climF ), while the 
output variables are the optimal tilt (β ) and orientation (γ ) angles of the solar panels. Each input and output 
variable was sampled hourly over a ten-year period (24 hours × 365 days × 10 years), resulting in 43800 data 
points (by city). These samples were used for each output variable during the training process, which was guided 
by hyperparameters such as the maximum number of hidden neurons, target error (mean squared error (MSE) 
of less than 3%) and maximum allowable deviations ( maxd ). The maxd  parameter sets a maximum distance 
threshold for clustering in the RBF training process, controlling the spread and granularity of the hidden 
neurons. The maximum number of hidden neurons varies depending on the variable; higher values are allocated 
to those with more complex dynamics (e.g. day of the year). These parameters were crucial for capturing local 
environmental variability and improving the model’s predictive accuracy. This configuration allows the dynamic 
relationships between environmental variables and solar tracking angles to be modelled accurately in real-world 
climatic conditions.

Table A.1. Radial Basis Function (RBF) neural network summary by city.

Inputs Samples Input Outputs Samples Output
Maximum 

hidden neuron
RBF 

Error Metric
Goal dmax Learning Method

 h  Hour 24 x 365 x 10 x (8 cases) - - 43800 MSE 3% 1 K - Means

 d  Day 365 x 10 x (8 cases) - - 43800 MSE 3% 10 K - Means

- -  °  β 12 x 365 x 10 x (8 cases) 350400 MSE 3% 1 K - Means

- -  °  γ 12 x 365 x 10 x (8 cases) 350400 MSE 3% 1 K - Means

- -  C°  T 12 x 365 x 10 43800 MSE 3% 1 K - Means

- - [ C°dT ] 12 x 365 x 10 43800 MSE 3% 1 K - Means

- -  [uclimF ] 24 x 365 x 10 43800 MSE 3% 0.1 K - Means

Source: The Authors.

Limitations: The RBF used in this study has certain limitations that must be recognised. Firstly, the model’s 
scope is dependent on the availability and representativeness of historical meteorological data from the provinces 
under study. While the large training dataset enables high accuracy, it also restricts the model’s capacity to adapt 
when applied to regions with limited or incomplete climatic records. Secondly, changes in environmental patterns 
not present in the training data affect the network’s performance, such as extreme weather events or long-term 
climate shifts. This may necessitate retraining with updated datasets. Thirdly, processing and training such a 
large number of samples is computationally demanding, particularly when tuning hyperparameters such as the 
maximum number of hidden neurons, error thresholds, and Gaussian spread parameters. These requirements 
may limit the model’s feasibility in real-time or resource-constrained environments. Further research should 
therefore focus on strategies to balance accuracy and computational efficiency, such as model simplification 
or hybridisation.

Gaussian Fuzzy Inference System (FIS):

Table  A.2 shows a summary of the Gaussian FIS and its fuzzy subjective valuation rules. These data 
represent various scenarios that combine qualitative assessments across multiple criteria. These are fed into the 
FIS to simulate decision-making in uncertain situations. Each row corresponds to a specific combination of 
inputs, evaluated by the FIS using predefined membership functions and inference rules. The input dataset was 
constructed to reflect a range of representative operating conditions, enabling the FIS to generate robust and 
generalisable output recommendations (see Equation A4 to Equation A6).
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Table A.2. A summary of the Gaussian fuzzy inference system and its fuzzy subjective valuation rules.

 h  Hour  d  Day  °  β  °  γ

Rule 1 Very low Min Max Min

Rule 2 Very low Very low Very High Min

Rule 3 Very low Low High Low

Rule 4 Very low Medium Medium Very High

Rule 5 Very low High High Max

Rule 6 Very low Very High Very High Max

Rule 7 Very low Max Max Min

Rule 8 Low Min Very High Very low

Rule 9 Low Very low High Very low

Rule 10 Low Low Medium Low

Rule 11 Low Medium Low Medium

Rule 12 Low High Medium High

Rule 13 Low Very High High Very High

Rule 14 Low Max Very High Min

Rule 15 Medium Min Medium Very low

Rule 16 Medium Very low Low Very low

Rule 17 Medium Low Very low Low

Rule 18 Medium Medium Min Medium

Rule 19 Medium High Very low High

Rule 20 Medium Very High Low Very High

Rule 21 Medium Max Medium Min

Rule 22 High Min Very High Very low

Rule 23 High Very low High Very low

Rule 24 High Low Medium Low

Rule 25 High Medium Low Medium

Rule 26 High High Medium High

Rule 27 High Very High High Very High

Rule 28 High Max Very High Min

Rule 29 Very High Min Max Min

Rule 30 Very High Very low Very High Min

Rule 31 Very High Low High Low

Rule 32 Very High Medium Medium Very High

Rule 33 Very High High High Max

Rule 34 Very High Very High Very High Max

Rule 35 Very High Max Max Min
Source: The Authors.

 Table A.3 summarises the parameters of the Gaussian FIS. It defines the centres of the Gaussian membership 
functions for the following input variables: hour, day, panel tilt angle (β) and orientation angle (γ). The standard 
deviation (σ) associated with each variable controls the spread of the membership functions, enabling smooth 
transitions between fuzzy sets.

Table A.3. A summary of the parameters of the Gaussian Fuzzy Inference System.

Gaussian Fuzzy Inference System Parameters

Centre 1 Centre 2 Centre 3 Centre 4 Centre 5 Centre 6 Centre 7 σ

 h  Hour SeH
4
−

+ St Se
Se

H H
H

2
−

+ St S
Se

H H
H 3

4
−

+ St Se
Se

H H
H StH - - 1.5

 d  Day 0 90 180 270 360 - - 30

 °  β 0 8 16 24 32 40 48 10

 °  γ 0 30 60 90 120 150 180 4

Source: The Authors.
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Limitations: The FIS implemented in this study also has limitations that merit consideration. The accuracy 
and reliability of the model depend heavily on the granularity and completeness of the meteorological and 
operational datasets used to define the membership functions and tuning parameters. Therefore, in regions 
with scarce or low-resolution data, the model may require significant recalibration before it can deliver robust 
results. In terms of adaptability, the FIS is designed to handle the climatic and operational variability represented 
in the training data. However, it may underperform when faced with environmental conditions or operational 
scenarios that fall outside these bounds, such as extreme weather patterns or atypical seasonal behaviour. 
Finally, the FIS’s computational demands primarily arise during the parameter tuning phase, particularly when 
optimising multiple Gaussian membership functions across several input variables. Although runtime during 
inference is relatively low, the initial calibration process, particularly when integrated into a hybrid optimisation 
framework, can be computationally intensive. This could limit the model’s application in time-sensitive or 
resource-constrained environments.

A.2.1. Summary of meteorological data used for RBF training

Figure A.1. summarises the meteorological data used for RBF training in Section 2.2.4 and Section 3 for the 
regions of La Rioja (LR), San Juan (SJ) and Entre Ríos (ER). It illustrates the number of days in each month with 
a specific maximum temperature and level of cloud cover. LR experiences a peak in sunny days in winter, while 
partly cloudy and rainy days are more frequent in summer. SJ, however, experiences a significant increase in 
cloudy days during the winter months. ER shows a more balanced distribution of sunny, partly cloudy, and cloudy 
days throughout the year. Temperature trends indicate that LR and SJ experience high summer temperatures, 
with SJ reaching higher extremes. Meanwhile, ER displays more moderate seasonal variations. Overall, the figure 
highlights the differences in cloud cover and temperature patterns across Argentina’s regions.

Due to space constraints, this article does not include more detailed statistical summaries of these climate 
datasets. However, future publications will focus specifically on the neural network’s performance and its ability 
to generalise under different climatic scenarios.

Figure A.1. Summary of meteorological data used for RBF training. 
Source: The authors.


