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Parallel strategies for a 
multi-criteria GRASP algorithm

Resumo
Este artigo propõe diferentes estratégias de paralelização de um algoritmo GRASP (Greedy Randomized Adaptive 
Search Procedure) multicritério. O algoritmo paralelo proposto é aplicado ao problema da árvore geradora mínima 
multicritério, que é NP-difícil. Neste problema, um vetor de custos é definido para cada aresta do grafo e o objetivo 
é encontrar as árvores geradoras eficientes (soluções Pareto-ótimas). Cada processo encontra um subconjunto 
de soluções eficientes. Estes subconjuntos são reunidos usando diferentes estratégias para obter o conjunto 
final de soluções eficientes.
O algoritmo proposto é testado em grafos completos com n = 20, 30 e 50 nós e r = 2 e 3 critérios. Os resultados 
computacionais mostram que a proposta de se paralelizar o algoritmo reduz o tempo de execução e os resultados 
obtidos pela versão seqüencial foram melhorados.

Palavras-chave
Algoritmo GRASP paralelo, otimização combinatória multicritério, árvore geradora mínima.

Abstract
This paper proposes different strategies of parallelizing a multi-criteria GRASP (Greedy Randomized Adaptive Search 
Problem) algorithm. The parallel GRASP algorithm is applied to the multi-criteria minimum spanning tree problem, 
which is NP-hard. In this problem, a vector of costs is defined for each edge of the graph and the goal is to find all the 
efficient or Pareto optimal spanning trees (Pareto-optimal solutions). Each process finds a subset of efficient solutions. 
These subsets are joined using different strategies to obtain the final set of efficient solutions.
The multi-criteria GRASP algorithm with the different parallel strategies are tested on complete graphs with n = 20, 
30 and 50 nodes and r = 2 and 3 criteria. The computational results show that the proposed parallel algorithms 
reduce the execution time and the results obtained by the sequential version were improved.
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(Holland, 1975), tabu search (Glover & Laguna, 1997) and 
simulated annealing (KIRKPATRICK et al., 1983) were 
originally conceived for single-criterion combinatorial 
optimization and the success achieved in their application to 
a very large number of problems has stimulated researchers 
to extend them to MCCO problems. In (JONES et al., 2002) 
is commented that there is no sign in the literature reviewed 
of the newer metaheuristic techniques, such as GRASP, 
being applied in the multi-criteria case. More recently, the 
fi rst papers using the GRASP metaheuristic for multi-criteria 
problems were proposed (ARROYO et al., 2005; VIANNA; 
ARROYO, 2004).  

In the multi-criteria minimum spanning tree (mc-MST) 
problem, a vector of costs is defi ned for each edge of the 
graph and the problem is to fi nd all Pareto optimal or 
effi cient spanning trees (solutions). The literature on mc-
MST problem is rather scarce. An exact method is proposed 
in (RAMOS et al., 1998). In (EHRGOTT; KLAMROTH, 
1997) and (HAMACHER; RUHE, 1994) are proposed 
approximate polynomial algorithms. The method proposed 
in (KNOWLES, 2002) and (ZHOU; GEN, 1999) are based 
on genetic algorithms.

In this paper, we propose three different ways of 
parallelizing a multi-criteria GRASP algorithm. The parallel 
GRASP algorithm is applied to the mc-MST problem with 
two and three criteria.

The organization of the paper is described as following. 
In the next section, we present the formulation of the mc-
MST problem. In Section 3, we discuss with more details 
the mc-GRASP algorithm. The parallel GRASP strategies 
are presented in Section 4. We present computational 
results in Section 5. Finally, Section 6 contains our 
concluding remarks.

MULTI-CRITERIA MINIMUM SPANNING TREE 
PROBLEM

Let G = (V, A) be a connected and undirected graph, where 
V = {v

1
,...,v

n
} is a fi nite set of nodes and A = {e

1
,...,e

m
} is a 

fi nite set of arcs or edges ek = (i, j), i∈V,  j∈V, i ≠ j. Each 
edge ek = (i, j) has associated a vector cij = (cij1,…,cijr) of 
r positive real numbers (costs). A spanning tree of graph G 
is a subgraph T = (V, A

T
) with A

T
 ⊆ A, such that T contains 

all nodes in V and connects them with exactly n–1 edges, 
so that there are no cycles. The mc-MST problem can be 
formulated as:

Minimize f(T) = (f
1
(T),..., f

r
(T)) 

subject to  T ∈ Ω,

where f
k
(T) =   is the k-th objective function and Ω

INTRODUCTION

Many practical optimization problems, generally, 
involve the minimization (or maximization) of several 
confl icting decision criteria. For example, in the topological 
network design problem is desirable to fi nd the best layout 
of components optimizing performance criteria, such as 
fi nancial cost, message delay, traffi c, link reliability, and so 
on. These criteria are confl icting and can not be optimized 
simultaneously. Instead, a satisfactory trade-off has to be 
found. So a Decision Maker has to select the best compromise 
solution, taking into account the preference of the criteria.

The goal of multi-criteria combinatorial optimization 
(MCCO) is to optimize simultaneously r > 1 criteria or 
objectives fi nding a satisfactory trade-off. MCCO problems 
have a set of optimal solutions (instead of a single optimum) 
in the sense that no other solutions are superior to them when 
all criteria are taken into account. They are known as Pareto 
optimal or efficient solutions.

Solving MCCO problems is quite different from single-
objective case (r = 1), where an optimal solution is searched. 
The diffi culty is not only due to the combinatorial complexity 
as in single-objective case, but also to the research of all 
elements of the effi cient set, whose cardinality grows with 
the number of objectives.

In the literature, some authors have proposed exact 
methods for solving specifi c MCCO problems (EHRGOTT; 
GANDIBLEUX, 2000). These methods are generally valid 
for two criteria (r = 2) problems, but can not be adapted 
easily to a higher number of criteria. Also, the exact 
methods are ineffi cient to solve large-scale NP-hard MCCO 
problems. As in the single-criterion case, the use of heuristic/
metaheuristic techniques seems to be the most promising 
approach to MCCO because of their effi ciency, generality 
and relative simplicity of implementation. Hard problems 
require large search spaces resulting in high computational 
costs. In this context, metaheuristics may require a large 
amount of time to fi nd good feasible solutions, encouraging 
the use of parallel techniques (DRUMMOND et al., 2001; 
OCHI et al., 1999; VIANNA et al., 1999). Although the 
main goal of a parallel metaheuristic is the reduction of the 
execution time necessary to fi nd an acceptable solution, 
sometimes it can also be used to improve the results obtained 
by sequential versions.

In a recent overview of multi-criteria metaheuristics, 
Jones et al. (2002) report the increase of papers published 
in the nineties and also note that almost 80% of the papers 
are dedicated to real problems, especially in the discipline 
of engineering. This number refl ects not only the increasing 
awareness of problems with multiple criteria, but also 
that metaheuristics are effective techniques to cope with 
such problems. Metaheuristics such as genetic algorithms 
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is the set of all the spanning trees of graph G. The image 
of a solution T ∈ Ω is the point z = f(T) in the objective 
space f(Ω). 

A point z = f(T) dominates z’ = f(T’) if z
j
 = f

j
(T) ≤ z

j
’ = 

fj(T’), ∀j  = 1,...,r, and z
j
 < z

j
’ for at least one j. A solution 

T dominates T’ if f(T) dominates f(T’). A solution T*∈ Ω 
is efficient (or Pareto-optimal) if there is no T ∈ Ω such 
that f(T) dominates f(T*). The goal is to determine the set 
E of effi cient solutions. We call the representation of set 
E in f(Ω) Pareto-frontier.

A utility function is a model of the Decision Maker’s 
preferences that maps each point in the objective space into 
a value of utility. It assumed that the goal of the Decision 
Maker is to minimize the utility. In this paper is used the 
weighted linear utility function defi ned in the following 
way:

u(T) =                    ,

where λ = (λ
1
,...,λ

r
) is the weight vector such that

  

THE MULTI-CRITERIA GRASP HEURISTIC 
(MC-GRASP) 

GRASP - Greedy Randomized Adaptive Search Procedure 
(Feo & Resende, 1995) is a multi-start metaheuristic, in 
which each iteration consists of two phases: construction 
and local search. The construction phase builds a feasible 
solution using a greedy randomized algorithm, whose 
neighborhood is investigated until a local minimum is found 
during the local search phase. The best overall solution is 
kept as the result.

The mc-GRASP heuristic is based on the optimization of 
the weighted linear utility function u(T). The main idea of the 
heuristic is to defi ne a weight vector for each iteration, which 
is used to calculate the function u(T). At each iteration of the 
heuristic, a solution T is built using the greedy randomized 
Kruskal’s algorithm (see Subsection 3.1). The Kruskal 
algorithm (KRUSKAL, 1956) is used replacing the vector of 
edges costs by a weighted linear combination of these costs. 
The built solution is submitted to a local search procedure 
(see Subsection 3.2). 

The weight vector λ = (λ
1
,...,λ

r
), generally, determinates 

a search direction on the Pareto-optimal frontier and various 
search directions are required to fi nd a variety of Pareto 
optimal solutions. Murata et al. (2001) introduces a way 

of generating weight vectors distributed uniformly on the 
Pareto frontier. The vectors are generated combining r non-
negatives integers with the sum of an integer value s: 

w
1
 + w

2
 + ...+ wr = s, where wi ∈{0, 1,..., s}

As an example, for r = 2 criteria and s = 5 we have 6 
vectors: (5,0), (4,1), (3,2), (2,3), (1,4) and (0,5). For r = 3 
and s = 3 we have 10 vectors: (3,0,0), (2,1,0), (2,0,1), (1,2,0), 
(1,1,1), (0,2,1), (0,3,0), (1,0,2), (0,1,2) and (0,0,3).

In order to obtain normalized weights  we 

considered λ
j
 = w

j
/s, w

j
 ∈ {0,...,s}.

The number of generated vectors for r objectives and for 
a value of s, N

r
(s), is calculated as follows:

N
2
(s) = s + 1.

N
3
(s) =               =             =  (s + 1)(s + 2)/2.

N
4
(s) =              =                       .

Figure 1 presents the implemented mc-GRASP 
algorithm that receives as input parameters the number 
of iterations N_iter, the percentage α ∈ [0, 1] (controls 
the amount of greediness and randomness) used at the 
construction phase and the weighted utility function to be 
optimized. As output, the algorithm returns the lPareto list, 
where the nondominated solutions are stored. The number 
of iterations of the algorithm corresponds to the number of 
weight vectors.

Greedy randomized construction
In the construction algorithm (Greedy_Randomized_

Kruskal), for each edge (i, j) of the graph is computed 

the weighted sum  where c
ij
 = (c

ij
1,…, c

ij
r)

 
is the cost vector of the edge (i, j) and λ = (λ

1
,...,λ

r
) is the 

weight vector. 
The candidate list C contains all the edges, in a no 

decreasing order of λc
ij
 (C = {e

1
, ...,e

m
}). The restricted 

candidate list is defi ned as RCL = {e
1
,...,e

|RCL|
}, where |RLC| 

= max(1, α × |C|) is the cardinality of RLC and α ∈ [0,1]. At 
each iteration of the constructive phase, an edge is selected 
randomly from RCL and it is added to the partial spanning 
tree as in the Kruskal’s algorithm (KRUSKAL, 1956). This 
phase fi nalizes when the spanning tree has n–1 edges. Note 
that, for α = 0 we have the original Kruskal’s algorithm. In 
the construction algorithm, randomization is necessary (α > 
0) to build different initial solutions. 
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Figure 2 presents the Greedy_Randomized_Kruskal 
algorithm that receives as input the parameter α ∈ [0, 1] 
(that controls the amounts of greediness and randomness) 
and the weight vector λ. As output, the algorithm returns 
the constructed tree T. 

Local search
In the local search, a feasible spanning tree T is 

represented by a Prufer number P (vector with n–2 nodes) 
(Moon, 1967) and by a permutation of the n nodes B. P and 
B are constructed using the Encode algorithm of Figure 3.

Algorithm  mc-GRASP (N_iter, α, u)

01. lPareto ← ∅;

02. Defi ne a set of weight vectors Λ = {λi = (λ
1
,...,λ

r
); i =1,…,N_iter};

03. For i ← 1 to N_iter do

04. Begin

05. T ← Greedy_Randomized_Kruskal (α, λi);

06. Update_The_Pareto_List (T, lPareto);

07. Local_Search (T, λi, u(T), lPareto);

08. End_for

09. Return lPareto;

End-Algorithm

Figure 1: mc-GRASP algorithm.

Algorithm   Greedy_Randomized_Kruskal (α , λ)

01. Build the candidate list C with all edges c
ij
 of the graph, in a no decreasing order of   ; 

02. T ← ∅;

03. z ← 0;

04. While z < n – 1 do

05. Begin

06. The restricted candidate list (RCL) is defi ned by the fi rsts h edges of C, where h = max (1, α x |C|) 

 is the size of RLC;  

07. Select edge e at random from RCL;

08. If   T ∪{e} does not create a cycle then 

09. Begin

10.      T ← T ∪{e};

11.      z ← z + 1;

12.      End_if

13. End_while

14. Return T;     

End-Algorithm

Figure 2: Greedy_Randomized_Kruskal algorithm.
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The Local_Search procedure, showed in Figure 5, is 
based on the exclusion and addition of edges. Figure 4(a) 
shows an example of a tree T represented by B = [1 3 4 2 6 
5 7] and P = [6 7 2 6 5] (B and P were constructed using the 
algorithm Encode of Figure 3). A neighbor T’ of T (Figure 
4(a)) is showed in Figure 4(b). The excluded edge is (B[j], 
P[j]) = (6, 5), j = 5. This exclusion creates two sub-trees T

1
 

and T
2
, rooted at nodes 6 and 5, respectively. T’ is generated 

adding edge (6, k) = (6, 7), k ∈ T
2
, k ≠ 5. The neighbor tree T’ 

is represented by B’ = [1 4 2 6 3 5 7] and P’ = [6 2 6 7 7].

PARALLEL GRASP STRATEGIES

Three different ways of parallelizing a multi-criteria 
GRASP algorithm were implemented for the mc-GRASP 
algorithm, described in Section 3. In these algorithms, the 
set of weight vectors λ is divided among the p processes and 
each one executes N_iter/p GRASP iterations, where N_iter 
is the total number of iterations to be executed. Each process 

Algorithm Encode (T) 

01. P  ← ∅, B ← ⎢∅⎢ All n-1 edges in the tree T are labeled as temporary. 

02. Construct a set D
1
 ⊂ V formed by degree 1 nodes of the temporarily labeled edges of T.

03. Choose node k, such that k is the least index in D
1
. 

04. Consider edge (k, j) ∈ T.  B ← B ∪ {k} and P ← P ∪ {j}. 

05. Give edge (k, j) ∈ T a permanent label. If there is only a remaining edge (u, v) with

      temporary label, add u and v to B, return P and B, stop. Else, go to Step 2.

End-Algorithm

Figure 3: Encode algorithm.

Figure 4: (a) An example of an encoding, (b) drop-and-add neighbor.

i (1 ≤ i ≤ p) works with its own local Pareto list (lParetoi). 
These lists are joined to generate the global Pareto list 
lPareto. Each algorithm has a different way of joining the 
local Pareto lists.

mc-ParGRASP1
In this algorithm, the local Pareto lists are joined only at 

the end of the algorithm. Each process i (1 ≤ i ≤ p) executes 
all the N_iter/p iterations and, at the end, sends the obtained 
list lParetoi to the master process (process 1).

This strategy has a simple implementation, but it has the 
inconvenience of all processes j (2 ≤ j ≤ p) stay idle while 
the master process receives the local lists and joins them into 
the global Pareto list lPareto. Depending on the number of 
solutions in each local Pareto list, this join procedure can 
consume a considerable time.   

mc-ParGRASP2
In this algorithm, each process i (2 ≤ i ≤ p) sends, at each 
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z iteration, the new nondominated solutions (new solutions 
of lPareto

i
) to the master process (process 1).

The goal of this implementation is to reduce the idleness 
time of the processes. After sending the solutions to the 
master process at iteration y, the process i (2 ≤ i ≤ p) can 
start the iteration y+1, while the master process updates the 
global Pareto list lPareto.  

Algorithm Local_Search (T, λ, u(T), lPareto)
01. Encode(T); //it is determined the Prufer number P and the B vector
02. Improved = True;
03. While Improved do
04. Begin 
05.      u(T*) = u(T);
06.     For j = 1 to n–2 do
07.     Begin 
08.         Delete edge e = (B[j], P[j])∈T creating two sub-trees T

1
 and T

2
, rooted at B[j], and P[j], respectively.

09.         For each k ∈ T
2
, k ≠ P[j] do

10.         Begin 
11.              Construct a new tree T’ adding an edge e’ = (B[j], k).

12.           Calculate u(T’) = , where fi(T’) = f
i
(T) –  + , i = 1,…,r.

13.              If u(T’) < u(T*) then
14.              Begin
15.                   u(T*) = u(T’);
16.                   Construct the representations B* and P* of the tree T’ doing two passes trough B. In the fi rst step, all 

the nodes B[l]∈ T
1 

∩ B – {B[j]} are added to B* and the correspondent adjacent nodes P[l] ∈ P to P*. 
Next, the nodes in (B[j], k) are added to B* and P*, respectively. Finally all the nodes B[l] ∈ T

2
 ∩B are 

added to B* (and the corresponding nodes P[l] ∈ P to P*,  l ≤ n–2).
17.              End_if;
18.     End_for;
19.     T = T ∪{e};
20.     End_for;
21.     If  u(T*) < u(T) then
22.     Begin
23.          T = T*;  B = B*;  P = P*;
24.          Update_The_Pareto_List (T, lPareto);
25.      Else 
26.          Improved = False;
27.      End_if
28. End_while;
29. Return lPareto;
30. End Local_Search

Figure 5: Local_Search algorithm.

This strategy has an advantage: it consumes more 
communication time. A greater number of solutions is sent 
when compared with the mc-ParGRASP1 algorithm. 

mc-ParGRASP3
In this algorithm, at the moment process i (2 ≤ i ≤ p) fi nds 

a nondominated solution T, T is sent to process i-1. At the 
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moment process i-1 receives the solution T, it verifi es if T is 
a nondominated solution comparing it with the solutions in 
lPareto

i-1
. If T is a nondominated solution, it is inserted into 

lPareto
i-1

 and it is sent to the process i-2. This procedure is 
repeated until T is received by the master process (process 
1) or it is not a nondominated solution in lPareto

j
 (1 ≤ j ≤ 

p). In this way, the lPareto
j-1

 is always more updated than 
lPareto

j
, for 2 ≤ j ≤ p.

The goal of this implementation is to decentralize the 
updating of the global Pareto list (lPareto).  

This strategy has the same advantage of the previous 
one. It consumes more communication time, sending a 
greater number of solutions when compared with the mc-
ParGRASP1 algorithm.

COMPUTATIONAL EXPERIMENTS

The proposed parallel algorithms were implemented 
using the C programming language and MPI library for the 
parallelism.

The computational experiments were carried out in a 
SUN FIRE 6800 with SPARC III 750MHZ processors and 
24Gb RAM.

The proposed parallel algorithms are tested on complete 
graphs with n = 20, 30 and 50 nodes and r = 2 and 3 criteria. 

In the experiments done, N_iter = 5000 GRASP 
iterations were executed. The values of α, used during 
the construction phase in the mc-GRASP algorithm, are 
α = 0.08, 0.03 and 0.01 for graphs with n = 20, 30 and 50 
nodes, respectively.

In the fi rst experiment, the proposed parallel algorithms 
were executed with p = 4 processors. The interval to 
send nondominated solutions by the mc-ParGRASP2 

algorithm was z = 1 iteration. 
Tables 1 and 2 present, for 
each instance, the number n of 
nodes, the number r of criteria 
and, for each algorithm, the 
consumed time in seconds 
(t) and the total number of 
nondominated solutions found 
(Sol.).

As expected, the results 
show that, for all instances, the number of nondominated 
solutions found was the same for all algorithms. However, 
when the consumed times are compared, the mc-
ParGRASP1 algorithm outperformed the others.

The mc-ParGRASP2 algorithm reduces the idleness 
time of the mc-ParGRASP1 algorithm. However, it 
consumes more time sending, to the master process, a 
total number of solutions greater than the necessary. A 
nondominated solution T at iteration y can be dominated 
by a solution T’ found at iteration y+1. The sending of T 
was unnecessary.

Experiments were done varying the value of z (interval 
to send nondominated solutions) for the mc-ParGRASP2 
algorithm and it was verifi ed that, for instances with r = 
3 criteria, the consumed time decreases according to the 
value of z increases, obtaining an equal consumed time to 
the mc-ParGRASP1 algorithm when z = N_iter. In this 

Table 1: Results of mc-ParGRASP1 and mc-ParGRASP2 algorithms on complete graphs with n = 20, 30 and 
50 nodes and r = 2 and 3 criteria.

INSTANCE n r
MC-PARGRASP1 MC-PARGRASP2

SOL. T(S) SOL. T(S)

g20_2 20 2 125 9 125 8

g20_3 20 3 4763 34 4763 41

g30_2 30 2 249 13 249 10

g30_3 30 3 12971 89 12971 170

g50_2 50 2 528 15 528 16

g50_3 50 3 28266 188 28266 401

The results show that parallelizing a multi-
criteria GRASP algorithm reduces execution 

time and can also improve the set of nondominated 
solutions obtained by the sequential version.
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situation, the mc-ParGRASP2 algorithm is equivalent to 
the mc-ParGRASP1 algorithm.   

With the goal of decentralizing the procedure of updating 
the global Pareto list lPareto, the mc-ParGRASP3 algorithm 
also sent a number of solutions greater than the necessary 
to the master process, generating a superior consumed time 
when compared with the other algorithms.

It was verifi ed, in the mc-ParGRASP1 algorithm, that 
the processes do not consume the same computational time 
to execute the N_iter/p iterations. Some of them fi nish before 
the others. Based on this observation, a variation of this 
algorithm is proposed. In this new algorithm, called mc-
ParGRASP1_wT (mc-ParGRASP1 with termination), 
each process i (1 ≤ i ≤ p) has a logic vector ψ

i
, where each 

position j (1 ≤ j ≤ p) of this vector is true if the process j has 
already fi nished the N_iter/p iterations and false, otherwise. 
When a process i fi nishes the N_iter/p iterations, it sends a 

communication message to the other processes and verifi es 
if the vector ψ

i
 is with true at all positions. If it is true, the 

process i starts to send the local Pareto list lPareto
i
 to the 

master process (process 1). Otherwise, the process i executes 
other iteration and, at the end of it, it repeats the verifi cation 
at vector ψ

i
.

The previous experiment was executed again with the 
mc-ParGRASP1 and mc-ParGRASP1_wT algorithms. 
Table 3 presents the results. For the instances with r = 
2 criteria, where the number of nondominated solutions 
found is smaller, the consumed time was similar. For the 
instances with r = 3 criteria, the consumed time of the 
mc-ParGRASP1_wT algorithm was superior. It can be 
explained by the greater number of nondominated solutions 
obtained. It demands a greater computational time to send 
the solutions to the master process.

In another experiment, the mc-ParGRASP1 and mc-

Table 2: Results of mc-ParGRASP1 and mc-ParGRASP3 algorithms on complete graphs with n = 20, 30 and 
50 nodes and r = 2 and 3 criteria.

INSTANCE n r
MC-PARGRASP1 MC-PARGRASP3

SOL. T(S) SOL. T(S)

g20_2 20 2 125 9 125 10

g20_3 20 3 4763 34 4763 91

g30_2 30 2 249 13 249 8

g30_3 30 3 12971 89 12971 293

g50_2 50 2 528 15 528 25

g50_3 50 3 28266 188 28266 456

Table 3: Results of mc-ParGRASP1 and mc-ParGRASP1_wT algorithms on complete graphs with n = 20, 30 
and 50 nodes and r = 2 and 3 criteria.

INSTANCE n r
mc-ParGRASP1 mc-ParGRASP1_WT

SOL. T(S) SOL. T(S)

g20_2 20 2 125 9 125 9

g20_3 20 3 4763 34 4911 40

g30_2 30 2 249 13 249 12

g30_3 30 3 12971 89 13194 104

g50_2 50 2 528 15 528 15

g50_3 50 3 28266 188 29790 205
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ParGRASP1_wT algorithms were executed varying the 
number p of processors. It was used the larger instance, 
g50_3. Table 4 presents, for each algorithm, the number of 
nondominated solutions found (Sol.), the consumed time 
in seconds (t) and the speedup (Sp.). The speedup was 
calculated for k (1 ≤ k ≤ 8) processors using the ratio t

1
/t

k
, 

where t
1
 is the consumed time by the algorithm using one 

processor and t
k
 is the consumed time using k processors.

The results show that according to the number p 
of processors increases, the difference between the 
consumed times increases. However, the difference 
between the numbers of nondominated solutions found 
increases too, achieving 2218 solutions (increase of 
7.86%) with p = 8. The increase of the consumed time 
can be explained by the increase of the number of 
nondominated solutions.

CONCLUSION

The use of the GRASP metaheuristic for multi-criteria 
problems is recent (ARROYO et al., 2005; VIANNA; 
ARROYO, 2004). We believe that the fi rst parallel multi-
criteria GRASP strategies are being proposed in this work.

The strategy described on mc-ParGRASP1 algorithm 
presented the best results for the mc-MST problem. A 
variation of this algorithm, called mc-ParGRASP1_wT, 
obtained good computational times and improved the 
global Pareto list found by the sequential version (mc-
GRASP).

The results show that parallelizing a multi-criteria 
GRASP algorithm reduces execution time and can also 
improve the set of nondominated solutions obtained by the 
sequential version.
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Table 4: Results of mc-ParGRASP1 and mc-ParGRASP1_wT on a complete graph with 50 nodes and 3 criteria.

P
mc-ParGRASP1 mc-ParGRASP1_WT

SOL. T(S) SP. SOL. T(S) SP.

1 28251 713 1.00 28251 715 1.00

2 28251 361 1.98 28449 378 1.89

4 28251 188 3.79 29790 205 3.49

8 28251 160 4.46 30433 180 3.97
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