
84 Produção, v. 17, n. 1, p. 084-093, Jan./Abr. 2007

Parallel strategies for a
multi-criteria GRASP algorithm

Resumo
Este artigo propõe diferentes estratégias de paralelização de um algoritmo GRASP (Greedy Randomized Adaptive
Search Procedure) multicritério. O algoritmo paralelo proposto é aplicado ao problema da árvore geradora mínima
multicritério, que é NP-difícil. Neste problema, um vetor de custos é definido para cada aresta do grafo e o objetivo
é encontrar as árvores geradoras eficientes (soluções Pareto-ótimas). Cada processo encontra um subconjunto
de soluções eficientes. Estes subconjuntos são reunidos usando diferentes estratégias para obter o conjunto
final de soluções eficientes.
O algoritmo proposto é testado em grafos completos com n = 20, 30 e 50 nós e r = 2 e 3 critérios. Os resultados
computacionais mostram que a proposta de se paralelizar o algoritmo reduz o tempo de execução e os resultados
obtidos pela versão seqüencial foram melhorados.

Palavras-chave
Algoritmo GRASP paralelo, otimização combinatória multicritério, árvore geradora mínima.

Abstract
This paper proposes different strategies of parallelizing a multi-criteria GRASP (Greedy Randomized Adaptive Search
Problem) algorithm. The parallel GRASP algorithm is applied to the multi-criteria minimum spanning tree problem,
which is NP-hard. In this problem, a vector of costs is defined for each edge of the graph and the goal is to find all the
efficient or Pareto optimal spanning trees (Pareto-optimal solutions). Each process finds a subset of efficient solutions.
These subsets are joined using different strategies to obtain the final set of efficient solutions.
The multi-criteria GRASP algorithm with the different parallel strategies are tested on complete graphs with n = 20,
30 and 50 nodes and r = 2 and 3 criteria. The computational results show that the proposed parallel algorithms
reduce the execution time and the results obtained by the sequential version were improved.

Key words
Parallel GRASP algorithm, multi-criteria combinatorial optimization, minimum spanning tree.

Estratégias de paralelização para
um algoritmo GRASP multicritério

 DALESSANDRO SOARES VIANNA

JOSÉ ELIAS CLAUDIO ARROYO

PEDRO SAMPAIO VIEIRA

THIAGO RIBEIRO DE AZEREDO

UCAM-Campos

084-093.indd 84084-093.indd 84 6/11/07 10:51:31 AM6/11/07 10:51:31 AM

Produção, v. 17, n. 1, p. 084-093, Jan./Abr. 2007 85

Parallel strategies for a multi-criteria GRASP algorithm

(Holland, 1975), tabu search (Glover & Laguna, 1997) and
simulated annealing (KIRKPATRICK et al., 1983) were
originally conceived for single-criterion combinatorial
optimization and the success achieved in their application to
a very large number of problems has stimulated researchers
to extend them to MCCO problems. In (JONES et al., 2002)
is commented that there is no sign in the literature reviewed
of the newer metaheuristic techniques, such as GRASP,
being applied in the multi-criteria case. More recently, the
fi rst papers using the GRASP metaheuristic for multi-criteria
problems were proposed (ARROYO et al., 2005; VIANNA;
ARROYO, 2004).

In the multi-criteria minimum spanning tree (mc-MST)
problem, a vector of costs is defi ned for each edge of the
graph and the problem is to fi nd all Pareto optimal or
effi cient spanning trees (solutions). The literature on mc-
MST problem is rather scarce. An exact method is proposed
in (RAMOS et al., 1998). In (EHRGOTT; KLAMROTH,
1997) and (HAMACHER; RUHE, 1994) are proposed
approximate polynomial algorithms. The method proposed
in (KNOWLES, 2002) and (ZHOU; GEN, 1999) are based
on genetic algorithms.

In this paper, we propose three different ways of
parallelizing a multi-criteria GRASP algorithm. The parallel
GRASP algorithm is applied to the mc-MST problem with
two and three criteria.

The organization of the paper is described as following.
In the next section, we present the formulation of the mc-
MST problem. In Section 3, we discuss with more details
the mc-GRASP algorithm. The parallel GRASP strategies
are presented in Section 4. We present computational
results in Section 5. Finally, Section 6 contains our
concluding remarks.

MULTI-CRITERIA MINIMUM SPANNING TREE
PROBLEM

Let G = (V, A) be a connected and undirected graph, where
V = {v

1
,...,v

n
} is a fi nite set of nodes and A = {e

1
,...,e

m
} is a

fi nite set of arcs or edges ek = (i, j), i∈V, j∈V, i ≠ j. Each
edge ek = (i, j) has associated a vector cij = (cij1,…,cijr) of
r positive real numbers (costs). A spanning tree of graph G
is a subgraph T = (V, A

T
) with A

T
 ⊆ A, such that T contains

all nodes in V and connects them with exactly n–1 edges,
so that there are no cycles. The mc-MST problem can be
formulated as:

Minimize f(T) = (f
1
(T),..., f

r
(T))

subject to T ∈ Ω,

where f
k
(T) = is the k-th objective function and Ω

INTRODUCTION

Many practical optimization problems, generally,
involve the minimization (or maximization) of several
confl icting decision criteria. For example, in the topological
network design problem is desirable to fi nd the best layout
of components optimizing performance criteria, such as
fi nancial cost, message delay, traffi c, link reliability, and so
on. These criteria are confl icting and can not be optimized
simultaneously. Instead, a satisfactory trade-off has to be
found. So a Decision Maker has to select the best compromise
solution, taking into account the preference of the criteria.

The goal of multi-criteria combinatorial optimization
(MCCO) is to optimize simultaneously r > 1 criteria or
objectives fi nding a satisfactory trade-off. MCCO problems
have a set of optimal solutions (instead of a single optimum)
in the sense that no other solutions are superior to them when
all criteria are taken into account. They are known as Pareto
optimal or efficient solutions.

Solving MCCO problems is quite different from single-
objective case (r = 1), where an optimal solution is searched.
The diffi culty is not only due to the combinatorial complexity
as in single-objective case, but also to the research of all
elements of the effi cient set, whose cardinality grows with
the number of objectives.

In the literature, some authors have proposed exact
methods for solving specifi c MCCO problems (EHRGOTT;
GANDIBLEUX, 2000). These methods are generally valid
for two criteria (r = 2) problems, but can not be adapted
easily to a higher number of criteria. Also, the exact
methods are ineffi cient to solve large-scale NP-hard MCCO
problems. As in the single-criterion case, the use of heuristic/
metaheuristic techniques seems to be the most promising
approach to MCCO because of their effi ciency, generality
and relative simplicity of implementation. Hard problems
require large search spaces resulting in high computational
costs. In this context, metaheuristics may require a large
amount of time to fi nd good feasible solutions, encouraging
the use of parallel techniques (DRUMMOND et al., 2001;
OCHI et al., 1999; VIANNA et al., 1999). Although the
main goal of a parallel metaheuristic is the reduction of the
execution time necessary to fi nd an acceptable solution,
sometimes it can also be used to improve the results obtained
by sequential versions.

In a recent overview of multi-criteria metaheuristics,
Jones et al. (2002) report the increase of papers published
in the nineties and also note that almost 80% of the papers
are dedicated to real problems, especially in the discipline
of engineering. This number refl ects not only the increasing
awareness of problems with multiple criteria, but also
that metaheuristics are effective techniques to cope with
such problems. Metaheuristics such as genetic algorithms

084-093.indd 85084-093.indd 85 6/11/07 10:51:32 AM6/11/07 10:51:32 AM

Dalessandro S. Vianna; José E. C. Arroyo; Pedro S. Vieira; Thiago R. de Azeredo

86 Produção, v. 17, n. 1, p. 084-093, Jan./Abr. 2007

is the set of all the spanning trees of graph G. The image
of a solution T ∈ Ω is the point z = f(T) in the objective
space f(Ω).

A point z = f(T) dominates z’ = f(T’) if z
j
 = f

j
(T) ≤ z

j
’ =

fj(T’), ∀j = 1,...,r, and z
j
 < z

j
’ for at least one j. A solution

T dominates T’ if f(T) dominates f(T’). A solution T*∈ Ω
is efficient (or Pareto-optimal) if there is no T ∈ Ω such
that f(T) dominates f(T*). The goal is to determine the set
E of effi cient solutions. We call the representation of set
E in f(Ω) Pareto-frontier.

A utility function is a model of the Decision Maker’s
preferences that maps each point in the objective space into
a value of utility. It assumed that the goal of the Decision
Maker is to minimize the utility. In this paper is used the
weighted linear utility function defi ned in the following
way:

u(T) = ,

where λ = (λ
1
,...,λ

r
) is the weight vector such that

THE MULTI-CRITERIA GRASP HEURISTIC
(MC-GRASP)

GRASP - Greedy Randomized Adaptive Search Procedure
(Feo & Resende, 1995) is a multi-start metaheuristic, in
which each iteration consists of two phases: construction
and local search. The construction phase builds a feasible
solution using a greedy randomized algorithm, whose
neighborhood is investigated until a local minimum is found
during the local search phase. The best overall solution is
kept as the result.

The mc-GRASP heuristic is based on the optimization of
the weighted linear utility function u(T). The main idea of the
heuristic is to defi ne a weight vector for each iteration, which
is used to calculate the function u(T). At each iteration of the
heuristic, a solution T is built using the greedy randomized
Kruskal’s algorithm (see Subsection 3.1). The Kruskal
algorithm (KRUSKAL, 1956) is used replacing the vector of
edges costs by a weighted linear combination of these costs.
The built solution is submitted to a local search procedure
(see Subsection 3.2).

The weight vector λ = (λ
1
,...,λ

r
), generally, determinates

a search direction on the Pareto-optimal frontier and various
search directions are required to fi nd a variety of Pareto
optimal solutions. Murata et al. (2001) introduces a way

of generating weight vectors distributed uniformly on the
Pareto frontier. The vectors are generated combining r non-
negatives integers with the sum of an integer value s:

w
1
 + w

2
 + ...+ wr = s, where wi ∈{0, 1,..., s}

As an example, for r = 2 criteria and s = 5 we have 6
vectors: (5,0), (4,1), (3,2), (2,3), (1,4) and (0,5). For r = 3
and s = 3 we have 10 vectors: (3,0,0), (2,1,0), (2,0,1), (1,2,0),
(1,1,1), (0,2,1), (0,3,0), (1,0,2), (0,1,2) and (0,0,3).

In order to obtain normalized weights we

considered λ
j
 = w

j
/s, w

j
 ∈ {0,...,s}.

The number of generated vectors for r objectives and for
a value of s, N

r
(s), is calculated as follows:

N
2
(s) = s + 1.

N
3
(s) = = = (s + 1)(s + 2)/2.

N
4
(s) = = .

Figure 1 presents the implemented mc-GRASP
algorithm that receives as input parameters the number
of iterations N_iter, the percentage α ∈ [0, 1] (controls
the amount of greediness and randomness) used at the
construction phase and the weighted utility function to be
optimized. As output, the algorithm returns the lPareto list,
where the nondominated solutions are stored. The number
of iterations of the algorithm corresponds to the number of
weight vectors.

Greedy randomized construction
In the construction algorithm (Greedy_Randomized_

Kruskal), for each edge (i, j) of the graph is computed

the weighted sum where c
ij
 = (c

ij
1,…, c

ij
r)

is the cost vector of the edge (i, j) and λ = (λ

1
,...,λ

r
) is the

weight vector.
The candidate list C contains all the edges, in a no

decreasing order of λc
ij
 (C = {e

1
, ...,e

m
}). The restricted

candidate list is defi ned as RCL = {e
1
,...,e

|RCL|
}, where |RLC|

= max(1, α × |C|) is the cardinality of RLC and α ∈ [0,1]. At
each iteration of the constructive phase, an edge is selected
randomly from RCL and it is added to the partial spanning
tree as in the Kruskal’s algorithm (KRUSKAL, 1956). This
phase fi nalizes when the spanning tree has n–1 edges. Note
that, for α = 0 we have the original Kruskal’s algorithm. In
the construction algorithm, randomization is necessary (α >
0) to build different initial solutions.

084-093.indd 86084-093.indd 86 6/11/07 10:51:33 AM6/11/07 10:51:33 AM

Produção, v. 17, n. 1, p. 084-093, Jan./Abr. 2007 87

Parallel strategies for a multi-criteria GRASP algorithm

Figure 2 presents the Greedy_Randomized_Kruskal
algorithm that receives as input the parameter α ∈ [0, 1]
(that controls the amounts of greediness and randomness)
and the weight vector λ. As output, the algorithm returns
the constructed tree T.

Local search
In the local search, a feasible spanning tree T is

represented by a Prufer number P (vector with n–2 nodes)
(Moon, 1967) and by a permutation of the n nodes B. P and
B are constructed using the Encode algorithm of Figure 3.

Algorithm mc-GRASP (N_iter, α, u)

01. lPareto ← ∅;

02. Defi ne a set of weight vectors Λ = {λi = (λ
1
,...,λ

r
); i =1,…,N_iter};

03. For i ← 1 to N_iter do

04. Begin

05. T ← Greedy_Randomized_Kruskal (α, λi);

06. Update_The_Pareto_List (T, lPareto);

07. Local_Search (T, λi, u(T), lPareto);

08. End_for

09. Return lPareto;

End-Algorithm

Figure 1: mc-GRASP algorithm.

Algorithm Greedy_Randomized_Kruskal (α , λ)

01. Build the candidate list C with all edges c
ij
 of the graph, in a no decreasing order of ;

02. T ← ∅;

03. z ← 0;

04. While z < n – 1 do

05. Begin

06. The restricted candidate list (RCL) is defi ned by the fi rsts h edges of C, where h = max (1, α x |C|)

 is the size of RLC;

07. Select edge e at random from RCL;

08. If T ∪{e} does not create a cycle then

09. Begin

10. T ← T ∪{e};

11. z ← z + 1;

12. End_if

13. End_while

14. Return T;

End-Algorithm

Figure 2: Greedy_Randomized_Kruskal algorithm.

084-093.indd 87084-093.indd 87 6/11/07 10:51:34 AM6/11/07 10:51:34 AM

Dalessandro S. Vianna; José E. C. Arroyo; Pedro S. Vieira; Thiago R. de Azeredo

88 Produção, v. 17, n. 1, p. 084-093, Jan./Abr. 2007

The Local_Search procedure, showed in Figure 5, is
based on the exclusion and addition of edges. Figure 4(a)
shows an example of a tree T represented by B = [1 3 4 2 6
5 7] and P = [6 7 2 6 5] (B and P were constructed using the
algorithm Encode of Figure 3). A neighbor T’ of T (Figure
4(a)) is showed in Figure 4(b). The excluded edge is (B[j],
P[j]) = (6, 5), j = 5. This exclusion creates two sub-trees T

1

and T
2
, rooted at nodes 6 and 5, respectively. T’ is generated

adding edge (6, k) = (6, 7), k ∈ T
2
, k ≠ 5. The neighbor tree T’

is represented by B’ = [1 4 2 6 3 5 7] and P’ = [6 2 6 7 7].

PARALLEL GRASP STRATEGIES

Three different ways of parallelizing a multi-criteria
GRASP algorithm were implemented for the mc-GRASP
algorithm, described in Section 3. In these algorithms, the
set of weight vectors λ is divided among the p processes and
each one executes N_iter/p GRASP iterations, where N_iter
is the total number of iterations to be executed. Each process

Algorithm Encode (T)

01. P ← ∅, B ← ⎢∅⎢ All n-1 edges in the tree T are labeled as temporary.

02. Construct a set D
1
 ⊂ V formed by degree 1 nodes of the temporarily labeled edges of T.

03. Choose node k, such that k is the least index in D
1
.

04. Consider edge (k, j) ∈ T. B ← B ∪ {k} and P ← P ∪ {j}.

05. Give edge (k, j) ∈ T a permanent label. If there is only a remaining edge (u, v) with

 temporary label, add u and v to B, return P and B, stop. Else, go to Step 2.

End-Algorithm

Figure 3: Encode algorithm.

Figure 4: (a) An example of an encoding, (b) drop-and-add neighbor.

i (1 ≤ i ≤ p) works with its own local Pareto list (lParetoi).
These lists are joined to generate the global Pareto list
lPareto. Each algorithm has a different way of joining the
local Pareto lists.

mc-ParGRASP1
In this algorithm, the local Pareto lists are joined only at

the end of the algorithm. Each process i (1 ≤ i ≤ p) executes
all the N_iter/p iterations and, at the end, sends the obtained
list lParetoi to the master process (process 1).

This strategy has a simple implementation, but it has the
inconvenience of all processes j (2 ≤ j ≤ p) stay idle while
the master process receives the local lists and joins them into
the global Pareto list lPareto. Depending on the number of
solutions in each local Pareto list, this join procedure can
consume a considerable time.

mc-ParGRASP2
In this algorithm, each process i (2 ≤ i ≤ p) sends, at each

084-093.indd 88084-093.indd 88 6/11/07 10:51:35 AM6/11/07 10:51:35 AM

Produção, v. 17, n. 1, p. 084-093, Jan./Abr. 2007 89

Parallel strategies for a multi-criteria GRASP algorithm

z iteration, the new nondominated solutions (new solutions
of lPareto

i
) to the master process (process 1).

The goal of this implementation is to reduce the idleness
time of the processes. After sending the solutions to the
master process at iteration y, the process i (2 ≤ i ≤ p) can
start the iteration y+1, while the master process updates the
global Pareto list lPareto.

Algorithm Local_Search (T, λ, u(T), lPareto)
01. Encode(T); //it is determined the Prufer number P and the B vector
02. Improved = True;
03. While Improved do
04. Begin
05. u(T*) = u(T);
06. For j = 1 to n–2 do
07. Begin
08. Delete edge e = (B[j], P[j])∈T creating two sub-trees T

1
 and T

2
, rooted at B[j], and P[j], respectively.

09. For each k ∈ T
2
, k ≠ P[j] do

10. Begin
11. Construct a new tree T’ adding an edge e’ = (B[j], k).

12. Calculate u(T’) = , where fi(T’) = f
i
(T) – + , i = 1,…,r.

13. If u(T’) < u(T*) then
14. Begin
15. u(T*) = u(T’);
16. Construct the representations B* and P* of the tree T’ doing two passes trough B. In the fi rst step, all

the nodes B[l]∈ T
1

∩ B – {B[j]} are added to B* and the correspondent adjacent nodes P[l] ∈ P to P*.
Next, the nodes in (B[j], k) are added to B* and P*, respectively. Finally all the nodes B[l] ∈ T

2
 ∩B are

added to B* (and the corresponding nodes P[l] ∈ P to P*, l ≤ n–2).
17. End_if;
18. End_for;
19. T = T ∪{e};
20. End_for;
21. If u(T*) < u(T) then
22. Begin
23. T = T*; B = B*; P = P*;
24. Update_The_Pareto_List (T, lPareto);
25. Else
26. Improved = False;
27. End_if
28. End_while;
29. Return lPareto;
30. End Local_Search

Figure 5: Local_Search algorithm.

This strategy has an advantage: it consumes more
communication time. A greater number of solutions is sent
when compared with the mc-ParGRASP1 algorithm.

mc-ParGRASP3
In this algorithm, at the moment process i (2 ≤ i ≤ p) fi nds

a nondominated solution T, T is sent to process i-1. At the

084-093.indd 89084-093.indd 89 6/11/07 10:51:36 AM6/11/07 10:51:36 AM

Dalessandro S. Vianna; José E. C. Arroyo; Pedro S. Vieira; Thiago R. de Azeredo

90 Produção, v. 17, n. 1, p. 084-093, Jan./Abr. 2007

moment process i-1 receives the solution T, it verifi es if T is
a nondominated solution comparing it with the solutions in
lPareto

i-1
. If T is a nondominated solution, it is inserted into

lPareto
i-1

 and it is sent to the process i-2. This procedure is
repeated until T is received by the master process (process
1) or it is not a nondominated solution in lPareto

j
 (1 ≤ j ≤

p). In this way, the lPareto
j-1

 is always more updated than
lPareto

j
, for 2 ≤ j ≤ p.

The goal of this implementation is to decentralize the
updating of the global Pareto list (lPareto).

This strategy has the same advantage of the previous
one. It consumes more communication time, sending a
greater number of solutions when compared with the mc-
ParGRASP1 algorithm.

COMPUTATIONAL EXPERIMENTS

The proposed parallel algorithms were implemented
using the C programming language and MPI library for the
parallelism.

The computational experiments were carried out in a
SUN FIRE 6800 with SPARC III 750MHZ processors and
24Gb RAM.

The proposed parallel algorithms are tested on complete
graphs with n = 20, 30 and 50 nodes and r = 2 and 3 criteria.

In the experiments done, N_iter = 5000 GRASP
iterations were executed. The values of α, used during
the construction phase in the mc-GRASP algorithm, are
α = 0.08, 0.03 and 0.01 for graphs with n = 20, 30 and 50
nodes, respectively.

In the fi rst experiment, the proposed parallel algorithms
were executed with p = 4 processors. The interval to
send nondominated solutions by the mc-ParGRASP2

algorithm was z = 1 iteration.
Tables 1 and 2 present, for
each instance, the number n of
nodes, the number r of criteria
and, for each algorithm, the
consumed time in seconds
(t) and the total number of
nondominated solutions found
(Sol.).

As expected, the results
show that, for all instances, the number of nondominated
solutions found was the same for all algorithms. However,
when the consumed times are compared, the mc-
ParGRASP1 algorithm outperformed the others.

The mc-ParGRASP2 algorithm reduces the idleness
time of the mc-ParGRASP1 algorithm. However, it
consumes more time sending, to the master process, a
total number of solutions greater than the necessary. A
nondominated solution T at iteration y can be dominated
by a solution T’ found at iteration y+1. The sending of T
was unnecessary.

Experiments were done varying the value of z (interval
to send nondominated solutions) for the mc-ParGRASP2
algorithm and it was verifi ed that, for instances with r =
3 criteria, the consumed time decreases according to the
value of z increases, obtaining an equal consumed time to
the mc-ParGRASP1 algorithm when z = N_iter. In this

Table 1: Results of mc-ParGRASP1 and mc-ParGRASP2 algorithms on complete graphs with n = 20, 30 and
50 nodes and r = 2 and 3 criteria.

INSTANCE n r
MC-PARGRASP1 MC-PARGRASP2

SOL. T(S) SOL. T(S)

g20_2 20 2 125 9 125 8

g20_3 20 3 4763 34 4763 41

g30_2 30 2 249 13 249 10

g30_3 30 3 12971 89 12971 170

g50_2 50 2 528 15 528 16

g50_3 50 3 28266 188 28266 401

The results show that parallelizing a multi-
criteria GRASP algorithm reduces execution

time and can also improve the set of nondominated
solutions obtained by the sequential version.

084-093.indd 90084-093.indd 90 6/11/07 10:51:37 AM6/11/07 10:51:37 AM

Produção, v. 17, n. 1, p. 084-093, Jan./Abr. 2007 91

Parallel strategies for a multi-criteria GRASP algorithm

situation, the mc-ParGRASP2 algorithm is equivalent to
the mc-ParGRASP1 algorithm.

With the goal of decentralizing the procedure of updating
the global Pareto list lPareto, the mc-ParGRASP3 algorithm
also sent a number of solutions greater than the necessary
to the master process, generating a superior consumed time
when compared with the other algorithms.

It was verifi ed, in the mc-ParGRASP1 algorithm, that
the processes do not consume the same computational time
to execute the N_iter/p iterations. Some of them fi nish before
the others. Based on this observation, a variation of this
algorithm is proposed. In this new algorithm, called mc-
ParGRASP1_wT (mc-ParGRASP1 with termination),
each process i (1 ≤ i ≤ p) has a logic vector ψ

i
, where each

position j (1 ≤ j ≤ p) of this vector is true if the process j has
already fi nished the N_iter/p iterations and false, otherwise.
When a process i fi nishes the N_iter/p iterations, it sends a

communication message to the other processes and verifi es
if the vector ψ

i
 is with true at all positions. If it is true, the

process i starts to send the local Pareto list lPareto
i
 to the

master process (process 1). Otherwise, the process i executes
other iteration and, at the end of it, it repeats the verifi cation
at vector ψ

i
.

The previous experiment was executed again with the
mc-ParGRASP1 and mc-ParGRASP1_wT algorithms.
Table 3 presents the results. For the instances with r =
2 criteria, where the number of nondominated solutions
found is smaller, the consumed time was similar. For the
instances with r = 3 criteria, the consumed time of the
mc-ParGRASP1_wT algorithm was superior. It can be
explained by the greater number of nondominated solutions
obtained. It demands a greater computational time to send
the solutions to the master process.

In another experiment, the mc-ParGRASP1 and mc-

Table 2: Results of mc-ParGRASP1 and mc-ParGRASP3 algorithms on complete graphs with n = 20, 30 and
50 nodes and r = 2 and 3 criteria.

INSTANCE n r
MC-PARGRASP1 MC-PARGRASP3

SOL. T(S) SOL. T(S)

g20_2 20 2 125 9 125 10

g20_3 20 3 4763 34 4763 91

g30_2 30 2 249 13 249 8

g30_3 30 3 12971 89 12971 293

g50_2 50 2 528 15 528 25

g50_3 50 3 28266 188 28266 456

Table 3: Results of mc-ParGRASP1 and mc-ParGRASP1_wT algorithms on complete graphs with n = 20, 30
and 50 nodes and r = 2 and 3 criteria.

INSTANCE n r
mc-ParGRASP1 mc-ParGRASP1_WT

SOL. T(S) SOL. T(S)

g20_2 20 2 125 9 125 9

g20_3 20 3 4763 34 4911 40

g30_2 30 2 249 13 249 12

g30_3 30 3 12971 89 13194 104

g50_2 50 2 528 15 528 15

g50_3 50 3 28266 188 29790 205

084-093.indd 91084-093.indd 91 6/11/07 10:51:38 AM6/11/07 10:51:38 AM

Dalessandro S. Vianna; José E. C. Arroyo; Pedro S. Vieira; Thiago R. de Azeredo

92 Produção, v. 17, n. 1, p. 084-093, Jan./Abr. 2007

ParGRASP1_wT algorithms were executed varying the
number p of processors. It was used the larger instance,
g50_3. Table 4 presents, for each algorithm, the number of
nondominated solutions found (Sol.), the consumed time
in seconds (t) and the speedup (Sp.). The speedup was
calculated for k (1 ≤ k ≤ 8) processors using the ratio t

1
/t

k
,

where t
1
 is the consumed time by the algorithm using one

processor and t
k
 is the consumed time using k processors.

The results show that according to the number p
of processors increases, the difference between the
consumed times increases. However, the difference
between the numbers of nondominated solutions found
increases too, achieving 2218 solutions (increase of
7.86%) with p = 8. The increase of the consumed time
can be explained by the increase of the number of
nondominated solutions.

CONCLUSION

The use of the GRASP metaheuristic for multi-criteria
problems is recent (ARROYO et al., 2005; VIANNA;
ARROYO, 2004). We believe that the fi rst parallel multi-
criteria GRASP strategies are being proposed in this work.

The strategy described on mc-ParGRASP1 algorithm
presented the best results for the mc-MST problem. A
variation of this algorithm, called mc-ParGRASP1_wT,
obtained good computational times and improved the
global Pareto list found by the sequential version (mc-
GRASP).

The results show that parallelizing a multi-criteria
GRASP algorithm reduces execution time and can also
improve the set of nondominated solutions obtained by the
sequential version.

Artigo recebido em 26/01/2006
Aprovado para publicação em 28/11/2006

Table 4: Results of mc-ParGRASP1 and mc-ParGRASP1_wT on a complete graph with 50 nodes and 3 criteria.

P
mc-ParGRASP1 mc-ParGRASP1_WT

SOL. T(S) SP. SOL. T(S) SP.

1 28251 713 1.00 28251 715 1.00

2 28251 361 1.98 28449 378 1.89

4 28251 188 3.79 29790 205 3.49

8 28251 160 4.46 30433 180 3.97

ARROYO, J. E. C., VIEIRA, P. S. & VIANNA,
D. S. (2005). A GRASP algorithm for the
multi-criteria minimum spanning tree
problem. In: Second Multidisciplinary
Conference on Scheduling: Theory and
Applications, Nova York, p. 1-11.

DRUMMOND, L. M. A., OCHI, L. S. &
VIANNA, D. S. (2001). An asynchronous
parallel metaheuristic for the period
vehicle routing problem. Future genera-
tion computer systems, 17, p. 79-386.

EHRGOTT, M. & KLAMROTH, K. (1997).
Connectedness of efficient solutions in
multiple criteria combinatorial optimiza-
tion. European Journal Operations Research,
v. 97, p. 159-166.

EHRGOTT, M. & GANDIBLEUX, X. (2000).
A survey and annotated bibliography of
multiobjective combinatorial optimiza-
tion. OR Spektrum, 22, p. 25-460.

FEO, T. A. & RESENDE, M. G. C. (1995).
Greedy randomized adaptive search

procedures. Global Optimization, 6, p.
109-133.

GLOVER, F. & LAGUNA, M. (1997). Tabu
search. Kluwer Academic Publishers.

HAMACHER, H. W. & RUHE, G. (1994). On
spanning tree problems with multiple
objectives. Annals of Operations Research,
52, p. 209-230.

HOLLAND, J. H. (1975). Adaptation in

Natural and Artificial Systems. University
of Michigan Press.

JONES, D. F., MIRRAZAVI, S. K. & TAMIZ,
M. (2002). Multi-objective metaheuris-
tics: An overview of the current state-of-
art. European Journal Operations Research,
137, p. 1-19.

KIRKPATRICK, S., GELLAT JR., C.D. &
VECCHI, M. P. (1983). Optimization by
Simulated Annealing. Science, 220, p.
671-680.

n References

084-093.indd 92084-093.indd 92 6/11/07 10:51:38 AM6/11/07 10:51:38 AM

Produção, v. 17, n. 1, p. 084-093, Jan./Abr. 2007 93

Parallel strategies for a multi-criteria GRASP algorithm

Dalessandro Soares Vianna
Professor Adjunto da Universidade Candido Mendes, UCAM-Campos,
Núcleo de Pesquisa e Desenvolvimento em Informática,
End.: Anita Peçanha, 100 – Parque São Caetano – Campos dos Goytacazes – RJ – 28040-320 – Brasil.
Tel. / Fax: (22) 2733-4100
E-mail: dalessandro@ucam-campos.br

José Elias Claudio Arroyo
Professor Adjunto da Universidade Candido Mendes, UCAM-Campos,
Núcleo de Pesquisa e Desenvolvimento em Informática,
End.: Anita Peçanha, 100 – Parque São Caetano – Campos dos Goytacazes – RJ – 28040-320 – Brasil.
Tel. / Fax: (22) 2733-4100
E-mail: jclaudio@ucam-campos.br

Pedro Sampaio Vieira
Aluno da Universidade Candido Mendes, UCAM-Campos,
Núcleo de Pesquisa e Desenvolvimento em Informática,
End.: Anita Peçanha, 100 – Parque São Caetano – Campos dos Goytacazes – RJ – 28040-320 – Brasil.
Tel. / Fax: (22) 2733-4100
E-mail: pedro.s.v@gmail.com

Thiago Ribeiro de Azeredo
Aluno da Universidade Candido Mendes, UCAM-Campos,
Núcleo de Pesquisa e Desenvolvimento em Informática,
End.: Anita Peçanha, 100 – Parque São Caetano – Campos dos Goytacazes – RJ – 28040-320 – Brasil.
Tel. / Fax: (22) 2733-4100
E-mail: thiagoribeiro@gmail.com

n Sobre os autores

KRISHNAMOORTH, M., ERNST, A. T.
& SHARAIHA, Y. M. Comparison of
Algorithms for the Degree Constrained
Minimum Spanning Tree. Journal of
Heuristics, v. 7, p. 587-611, 2001.

KRUSKAL, J. B. On the shortest span-
ning tree of graph and the traveling
salesman problem. Proceedings of the
American Mathematical Society, v. 7, p.
48-50, 1956.

KNOWLES, J. D. Local search and hybrid
evolutionary algorithms for Pareto opti-

mization. Thesis of Doctorate, University
of Reading, UK, 2002.

MOON, J. W. Various Proofs of Cayley’s
Formula for Counting Trees. In: A Seminar
on Graph Theory [edited by F. Harary],
New York: Holt, Rinehart and Winston,
p. 70-78, 1967.

MURATA, T., ISHIBUCHI, H. & GEN, M.
(2001). Specification of genetic Search
directions in cellular multi-objective
genetic algorithms. Evolutionary Multi-
Criterion optimization, EMO. LNCS, 1993,
p. 82-95.

OCHI, L. S., VIANNA, D. S., DRUMMOND,
L. M. A. & VICTOR, A. O. A parallel
evolutionary algorithm for the vehicle
routing problem with heterogeneous
fleet. Future Generation Computer Systems,
14, p. 285-292, 1999.

RAMOS, R. M., ALONSO, S., SICÍLIA, J. &
GONZÁLES, C. (1998). The problem of
the optimal biobjective spanning tree
problem. European Journal Operations
Research, v. 111, p. 617-628.

VIANNA, D. S., OCHI, L. S. & DRUMMOND
L. M. A. A parallel hybrid evolutionary

metaheuristic for the period vehicle
routing problem. Lecture notes in computer
science, 1586, p. 183-191, 1999.

VIANNA, D. S. & ARROYO, J. E. C. A
GRASP algorithm for the multi-objective
knapsack problem. In: XIV International
Conference of the Chilean Computer Science
Society, Arica, IEEE CS Press, p. 69-75,
2004.

Zhou, G. & Gen, M. Genetic algorithm
approach on Multi-criteria minimum
spanning tree problem. European Journal
Operations Research, v. 114, p. 141-152,
1999.

n References

This work was funded by the Municipal Town Hall of Campos dos Goytacazes city. The computational experiments were done at the
Laboratório Nacional de Computação Científi ca – LNCC.

n Acknowledgments

084-093.indd 93084-093.indd 93 6/11/07 10:51:39 AM6/11/07 10:51:39 AM

