Production
http://www.production.periodikos.com.br/article/doi/10.1590/0103-6513.20250049
Production
Research Article

Risk identification and structuring in Brazilian food supply chains: an ISM and MICMAC-based multicriteria approach

Eveliny Dias de Medeiros; Rosania Monteiro Coutinho; João Paulo Maximiano Almeida; Marina Bouzon

Downloads: 0
Views: 3

Abstract

Paper aims: This study aims to identify the main risks affecting food supply chains (FSCs) in Brazil, analyze their interrelationships, and propose mitigation strategies.

Originality: This research presents a structured approach to modeling the interdependencies among FSC risks, offering original insights with practical applications for risk managers in the Brazilian food sector.

Research method: The methodology consists of three phases: (1) an Exploratory Literature Review (ELR) to identify and categorize FSC risks; (2) a survey with industry experts to collect qualitative data on the interrelationships among the identified risks; and (3) the application of Interpretive Structural Modeling (ISM) and the Matrix of Cross-Impact Multiplications Applied to Classification (MICMAC) analysis to explore the relationships among risks and propose mitigation strategies.

Main findings: Ten key risks were identified and ranked. Natural risks and macro-level risks emerged as the most influential, while demand, supply, and operational risks were found to be more dependent on these factors. The ISM model illustrated the interconnections among the risks, and the MICMAC analysis classified them according to their driving and dependence power.

Implications for theory and practice: The findings support the development of targeted mitigation strategies, strengthening risk resilience and decision-making within FSCs. Additionally, the study contributes to academic discourse by integrating structural analysis into food supply chain risk management.

Supplementary material - Questionnaire

Keywords

Food system, Disruptions, ISM, MICMAC

References

Ahmad, N., & Qahmash, A. (2021). SmartISM: implementation and assessment of interpretive structural modeling. Sustainability, 13(16), 8801. http://doi.org/10.3390/su13168801.

Ali, I., Golgeci, I., & Arslan, A. (2023a). Achieving resilience through knowledge management practices and risk management culture in agri-food supply chains. Supply Chain Management, 28(2), 284-299. http://doi.org/10.1108/SCM-02-2021-0059.

Ali, I., Sadiddin, A., & Cattaneo, A. (2023b). Risk and resilience in agri-food supply chain SMEs in the pandemic era: a cross-country study. International Journal of Logistics Research and Applications, 26(11), 1602-1620. http://doi.org/10.1080/13675567.2022.2102159.

Ali, I., & Govindan, K. (2023). Extenuating operational risks through digital transformation of agri-food supply chains. Production Planning and Control, 34(12), 1165-1177. http://doi.org/10.1080/09537287.2021.1988177.

Altay, N., & Ramirez, A. (2010). Impact of disasters on firms in different sectors: implications for supply chains. The Journal of Supply Chain Management, 46(4), 59-80. http://doi.org/10.1111/j.1745-493X.2010.03206.x.

Attri, R., Dev, N., & Sharma, V. (2013). Interpretive structural modelling (ISM) approach: an overview. RESEARCH Journal of Management Sciences, 2(2), 117-127.

Bassett, H. R., Lau, J., Giordano, C., Suri, S. K., Advani, S., & Sharan, S. (2021). Preliminary lessons from COVID-19 disruptions of small-scale fishery supply chains. World Development, 143, 105473. http://doi.org/10.1016/j.worlddev.2021.105473. PMid:36567900.

Camargo, F. G. (2023). A hybrid novel method to economically evaluate the carbon dioxide emissions in the productive chain of Argentina. Production, 33, e20220053. http://doi.org/10.1590/0103-6513.20220053.

Carpitella, S., Mzougui, I., & Izquierdo, J. (2022). Multi-criteria risk classification to enhance complex supply networks. Opsearch, 59(3), 769-785. http://doi.org/10.1007/s12597-021-00568-8.

Carvalho, K. L. D., Costa, R. P. D., & Souza, R. D. C. (2014). Strategic management of relationships in lettuce supply chain. Production, 24, 271-282. http://doi.org/10.1590/S0103-65132013005000031.

Diabat, A., Govindan, K., & Panicker, V. V. (2012). Supply chain risk management and its mitigation in the food industry. International Journal of Production Research, 50(11), 3039-3050. http://doi.org/10.1080/00207543.2011.588619.

Fan, S., Cho, E. E., Meng, T., & Rue, C. (2021). How to prevent and cope with coincidence of risks to the global food system. Annual Review of Environment and Resources, 46(1), 601-623. http://doi.org/10.1146/annurev-environ-012220-020844.

Gruzauskas, V., Burinskiene, A., & Krisciunas, A. (2023). Application of information-sharing for resilient and sustainable food delivery in last-mile logistics. Mathematics, 11(2), 1-21. http://doi.org/10.3390/math11020303.

Hachicha, W., & Elmsalmi, M. (2014). An integrated approach based on structural modeling for risk prioritization in supply network management. Journal of Risk Research, 17(10), 1301-1324. http://doi.org/10.1080/13669877.2013.841734.

Haleem, A., Sushil, S., Qadri, M. A., & Kumar, S. (2012). Analysis of critical success factors of world-class manufacturing practices: an application of interpretative structural modelling and interpretative ranking process. Production Planning and Control, 23(10-11), 722-734. http://doi.org/10.1080/09537287.2011.642134.

Hendricks, K. B., & Singhal, V. R. (2009). An empirical analysis of the effect of supply chain disruptions on long-run stock price performance and equity risk of the firm. Production and Operations Management, 14(1), 35-52. http://doi.org/10.1111/j.1937-5956.2005.tb00008.x.

Hoang, T. T., Bell, J. E., & Goldsby, T. J. (2023). Making supply chain traceability strategic: insights from the food industry. International Journal of Physical Distribution & Logistics Management, 53(9), 913-945. http://doi.org/10.1108/IJPDLM-03-2022-0064.

Hossain, M. K., Thakur, V., & Mangla, S. K. (2022). Modeling the emergency health-care supply chains: responding to the COVID-19 pandemic. Journal of Business and Industrial Marketing, 37(8), 1623-1639. http://doi.org/10.1108/JBIM-07-2020-0315.

Ivanov, D., Sokolov, B., & Dolgui, A. (2014). The Ripple effect in supply chains: trade-off ‘efficiency-flexibility-resilience’ in disruption management. International Journal of Production Research, 52(7), 2154-2172. http://doi.org/10.1080/00207543.2013.858836.

Jacobi, J., Mukhovi, S., Llanque, A., Toledo, D., Speranza, C. I., Käser, F., Augstburger, H., Delgado, J. M. F., Kiteme, B. P., & Rist, S. (2019). Actor-specific risk perceptions and strategies for resilience building in different food systems in Kenya and Bolivia. Regional Environmental Change, 19(3), 879-892. http://doi.org/10.1007/s10113-018-1448-x.

Kawasaki, B. C., & Mascia, F. L. (2025). Discussing the challenges of Operational Experience Feedback processes from the perspective of Psychodynamics of Work. Production, 35, e20240049. http://doi.org/10.1590/0103-6513.20240049.

Kersten, C. C., Kerber, J. M. C., Silva, J. D. S., Bouzon, M., & Campos, L. M. S. (2024). Traceability in the agri-food supply chain: A new perspective under the Circular Economy approach. Production, 34, e20240009. http://doi.org/10.1590/0103-6513.20240009.

Kobayashi, K. K., Cantamessa, M., & Carvalho, M. M. (2025). Unveiling multilayered barriers to agile methodologies: An exploratory study on relationships among barriers. Production, 35, e20240096. http://doi.org/10.1590/0103-6513.20240096.

Kuizinaitė, J., Morkūnas, M., & Volkov, A. (2023). Assessment of the most appropriate measures for mitigation of risks in the agri-food supply chain. Sustainability, 15(12), 9378. http://doi.org/10.3390/su15129378.

Kumar, S., Gorane, S., & Kant, R. (2015). Modelling the supplier selection process enablers using ISM and fuzzy MICMAC approach. Journal of Business and Industrial Marketing, 30(5), 536-551. http://doi.org/10.1108/JBIM-01-2013-0012.

Leat, P., & Revoredo‐Giha, C. (2013). Risk and resilience in agri‐food supply chains: the case of the ASDA PorkLink supply chain in Scotland. Supply Chain Management, 18(2), 219-231. http://doi.org/10.1108/13598541311318845.

Lund, S., Manyika, J., Woetzel, J., Barriball, E., Krishnan, M., Alicke, K., Birshan, M., George, K., Smit, S., Swan, D., & Hutzler, K. (2020). Risk, resilience, and rebalancing in global value chains. New York: McKinsey Global Institute.

Luthra, S., Kumar, V., Kumar, S., & Haleem, A. (2011). Barriers to implementing green supply chain management in the automobile industry using interpretive structural modeling technique: an Indian perspective. Journal OF Industrial Engineering and Management, 4(2), 231-257. http://doi.org/10.3926/jiem.2011.v4n2.p231-257.

Montes Causil, O. M., & Morais, D. C. (2023). Multicriteria negotiation model for selecting sustainable suppliers’ problem in the agribusiness. Production, 33, e20220090. http://doi.org/10.1590/0103-6513.20220090.

Nakai, J. (2018). Food and Agriculture Organization of the United Nations and the sustainable development goals: natural resources management officer, FAO. From the millennium development goals to the sustainable development goals. Sustainable Development, 22, 3-11.

Nyamah, E. Y., Jiang, Y., Feng, Y., & Enchill, E. (2017). Agri-food supply chain performance: an empirical impact of risk. Management Decision, 55(5), 872-891. http://doi.org/10.1108/MD-01-2016-0049.

Ramos, E., Pettit, T. J., Habib, M., & Chavez, M. (2021). A model ISM-MICMAC for managing risk in the agri-food supply chain: an investigation from the Andean region of Peru. International Journal of Value Chain Management, 12(1), 62-85. http://doi.org/10.1504/IJVCM.2021.112845.

Septiani, W., Marimin, M., Herdiyeni, Y., & Haditjaroko, L. (2016). Method and approach mapping for agri-food supply chain risk management: a literature review. International Journal of Supply Chain Management, 5(2), 51-64.

Senna, P., Reis, A., Guimarães, J. D., Marujo, L. G., Santos, A. C. S. G., & Severo, E. A. (2023). Healthcare supply chain risk assessment KPIs: an empirical study using PLS-SEM. Production, 33, e20220107. http://doi.org/10.1590/0103-6513.20220107.

Silva, V. L. D. S., Souza, R. D. C., Silva, A. A. P. D., & Saes, M. S. M. (2015). Strategy management of multi-channel distribution: a study in the Brazilian food industry. Production, 26, 115-128. http://doi.org/10.1590/0103-6513.039112.

Silva, J. S., Oliveira, A. M., Oliveira, J. V., & Bouzon, M. (2024). Barriers to digital transformation in fruit and vegetable supply chains: a multicriteria analysis using ISM and MICMAC. Opsearch, 62(1), 460-482. http://doi.org/10.1007/s12597-024-00809-6.

Singh, A., Gupta, A., & Mehra, A. (2021). Best criteria selection based PROMETHEE II method. Opsearch, 58(1), 160-180. http://doi.org/10.1007/s12597-020-00464-7.

Teerasoponpong, S., & Sopadang, A. (2022). Decision support system for adaptive sourcing and inventory management in small- and medium-sized enterprises. Robotics and Computer-integrated Manufacturing, 73, 102226. http://doi.org/10.1016/j.rcim.2021.102226.

Yu, V. F., Chiang, F.-Y., Le, T. H. A., & Lin, S.-W. (2022). Using the ISM method to analyze the relationships between various contractor prequalification criteria. Applied Sciences, 12(8), 3726. http://doi.org/10.3390/app12083726.

Zhao, G., Liu, S., Lopez, C., Chen, H., Lu, H., Mangla, S. K., & Elgueta, S. (2020). Risk analysis of the agri-food supply chain: a multi-method approach. International Journal of Production Research, 58(16), 4851-4876. http://doi.org/10.1080/00207543.2020.1725684.

Zhao, G., Olan, F., Liu, S., Hormazabal, J. H., Lopez, C., Zubairu, N., Zhang, J., & Chen, X. (2022). Links between risk source identification and resilience capability building in agri-food supply chains: a comprehensive analysis. IEEE Transactions on Engineering Management, 71, 13362-13379. http://doi.org/10.1109/TEM.2022.3221361.
 


Submitted date:
04/30/2025

Accepted date:
09/22/2025

691b2640a953950e115c6edb production Articles
Links & Downloads

Production

Share this page
Page Sections