Effort estimation for software products targeted at the manufacturing sector using machine learning algorithms
Diane Lenhart; Matheus Henrique Ribeiro; Flavio Trojan
Abstract
Keywords
References
Al-Betar, M. A., Kassaymeh, S., Makhadmeh, S. N., Fraihat, S., & Abdullah, S. (2023). Feedforward neural network-based augmented salp swarm optimizer for accurate software development cost forecasting.
Bontempi, G., Ben Taieb, S., & Le Borgne, Y. A. (2013). Machine learning strategies for time series forecasting. In: M.-A. Aufaure, E. Zimányi (Eds.),
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015).
Breiman, L. (2001). Random forests.
Chen, T., & Guestrin, C. (2016). Xgboost: a scalable tree boosting system. In
Chou, J. S., Cheng, M. Y., Wu, Y. W., & Wu, C. C. (2012). Forecasting enterprise resource planning software effort using evolutionary support vector machine inference model.
Freedman, D. A. (2009).
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Huang, G.-B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: a survey.
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: theory and applications.
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy.
Jabeur, S. B., Mefteh-Wali, S., & Viviani, J. L. (2024). Forecasting gold price with the XGBoost algorithm and SHAP interaction values.
Jiang, J., Chen, Z., Wang, Y., Peng, T., Zhu, S., & Shi, L. (2019). Parameter estimation for PMSM based on a back propagation neural network optimized by chaotic artificial fish swarm algorithm.
Kassaymeh, S., Alweshah, M., Al-Betar, M. A., Hammouri, A. I., & Al-Ma’aitah, M. A. (2024). Software effort estimation modeling and fully connected artificial neural network optimization using soft computing techniques.
Kaushik, A., Tayal, D. K., & Yadav, K. (2020). A comparative analysis on effort estimation for agile and non-agile software projects using DBN-ALO.
Kumar, P. S., Behera, H. S., Kumari, A., Nayak, J., & Naik, B. (2020). Advancement from neural networks to deep learning in software effort estimation: perspective of two decades.
Lavingia, K., Patel, R., Patel, V., & Lavingia, A. (2024). Software effort estimation using machine learning algorithms.
López-Martín, C. (2022). Machine learning techniques for software testing effort prediction.
Myers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J. (2012).
Rahman, M., Roy, P. P., Ali, M., Gonçalves, T., & Sarwar, H. (2023). Software effort estimation using machine learning technique.
Rankovic, N., Rankovic, D., Ivanovic, M., & Lazic, L. (2021). A new approach to software effort estimation using different artificial neural network architectures and Taguchi orthogonal arrays.
Rao, K. E., Terlapu, P. R. V., Naidu, P. A., Kumar, T. R., & Pydi, B. M. (2024). Feature importance for software development effort estimation using multi level ensemble approaches.
Ribeiro, M. H. D. M. (2021).
Sharma, S., & Vijayvargiya, S. (2020). Applying soft computing techniques for software project effort estimation modelling. In
Van Hai, V., Nhung, H. L. T. K., Prokopova, Z., Silhavy, R., & Silhavy, P. (2022a). Toward improving the efficiency of software development effort estimation via clustering analysis.
Varshini, A. G. P., & Kumari, K. A. (2024). Software effort estimation using stacked ensemble technique and hybrid principal component regression and multivariate adaptive regression splines.
Submitted date:
09/05/2024
Accepted date:
09/22/2025
