Production
http://www.production.periodikos.com.br/article/doi/10.1590/0103-6513.20240139
Production
Research Article

A novel hybrid methodology for multi-objective optimisation of dual-axis solar tracking systems with artificial intelligence

Federico Gabriel Camargo; Francisco Guido Rossomando; Daniel Ceferino Gandolfo; Esteban Antonio Sarroca; Omar Roberto Faure; Gonzalo Sosa

Downloads: 0
Views: 21

Abstract

Paper aims: This article introduces a novel hybrid methodology in order to optimise dual-axis photovoltaic tracking systems in three Argentinian provinces by combining artificial intelligence, swarm intelligence and the productive chain. It identifies the most suitable strategy by balancing fixed-panel worst-case scenarios with continuous-tracking best-case scenarios and incorporating the decision makers’ preferences.

Originality: Firstly, the novel research methods listed below combine mathematical modelling and graphical analysis, and highlighting their complementarity and distinct contributions. Secondly, theoretical, methodological and practical gaps are identified and addressed in Argentina and other under-explored regions. This offers decision-makers a viable interim solution.

Research method: Firstly, it involves the novel mathematical modelling, simulation, optimisation, comparison of dual-axis solar tracking in fixed and mobile cases using multi-criteria techniques, while also validating across provinces and extreme scenarios. Secondly, it consists of a novel hybrid multi-criteria optimisation model combining particle swarm optimisation with constriction factor and a fuzzy-guided feedback metaheuristic system. It is for dynamic boundary-reflected constraints, the Analytic Hierarchy Process, and radial basis function neural networks. Thirdly, this survey is based on data obtained through the present line of research, including government and meteorological station data, manufacturer data and independent research.

Main findings: This methodology improves energy efficiency by 10–27% and economic performance by 40–110% compared to fixed panels, depending on regional and technical conditions.

Implications for theory and practice: This novel, scalable hybrid methodology combines the aforementioned research methods (theory) with support for decision-making in the planning of renewable energy projects in constrained economies (practice).

Keywords

Multi-objective hybrid methodology, Artificial Intelligence, Swarm-based optimisation techniques, Tracking solar system and Argentinean production chain, Satisfactory decision making

References

Ahamed, M. S., Guo, H., & Tanino, K. (2021). Cloud cover-based models for estimation of global solar radiation: A review and case study. International Journal of Green Energy, 19(2), 175-189. http://doi.org/10.1080/15435075.2021.1941043.

Alizamir, M., Othman Ahmed, K., Shiri, J., Fakheri Fard, A., Kim, S., Heddam, S., & Kisi, O. (2023). a new insight for daily solar radiation prediction by meteorological data using an advanced artificial intelligence algorithm: deep extreme learning machine integrated with variational mode decomposition technique. Sustainability, 15(14), 11275. http://doi.org/10.3390/su151411275.

Argentina, Ministerio de Energía y Minería. (2025a). Datos energía. Retrieved in 2025, March 13, from http://datos.energia.gob.ar/

Argentina, Secretaría de Energía de la Nación. (2025b). Datos energéticos abiertos de la República Argentina. Retrieved in 2025, March 17, from http://datos.energia.gob.ar/

Azam, M. S., Bhattacharjee, A., Hassan, M., Rahaman, M., Aziz, S., Shaikh, M. A. A., & Islam, M. S. (2024). Performance enhancement of solar PV system introducing semi-continuous tracking algorithm based solar tracker. Energy, 289, 129989. http://doi.org/10.1016/j.energy.2023.129989.

Camargo, F. G. (2022). Fuzzy multi-objective optimization of the energy transition towards renewable energies with a mixed methodology. Production, 32, e20210132. http://doi.org/10.1590/0103-6513.20210132.

Camargo, F. G., Rossomando, F. G., Gandolfo, D. C., Sarroca, E. A., Faure, O. R., & Andrés Pérez, E. (2024). A novel methodology to obtain optimal economic indicators based on the Argentinean production chain under uncertainty. Production, 34, e20230091. http://doi.org/10.1590/0103-6513.20230091.

Cao, J., Zhou, T., Zhi, S., Lam, S., Ren, G., Zhang, Y., Wang, Y., Dong, Y., & Cai, J. (2024). Fuzzy inference system with interpretable fuzzy rules: Advancing explainable artificial intelligence for disease diagnosis: a comprehensive review. Information Sciences, 662, 120212. http://doi.org/10.1016/j.ins.2024.120212.

Ceballos, J. C., Forciniti, J. D., & Molina, M. L. (2023). Algunas características del régimen de radiación solar global en el Noroeste Argentino, período 2017-2021. Avances en Energías Renovables y Medio Ambiente, 26, 345-356. Retrieved in 2025, March 17, from https://portalderevistas.unsa.edu.ar/index.php/averma/article/view/3848

Chrifi-Alaoui, C., Bouhaddou, I., Benabdellah, A. C., & Zekhnini, K. (2025). Industry 5.0 for sustainable supply chains: a fuzzy AHP approach for evaluating the adoption barriers. Procedia Computer Science, 253, 2645-2654. http://doi.org/10.1016/j.procs.2025.01.324.

Compañía Administradora del Mercado Mayorista Eléctrico – CAMMESA. (2025). Retrieved in 2025, March 17, from https://cammesaweb.cammesa.com/

Cuevas, E., Ascencio-Piña, C. R., Pérez, M., & Morales-Castañeda, B. (2024). Considering radial basis function neural network for effective solution generation in metaheuristic algorithms. Scientific Reports, 14(1), 16806. http://doi.org/10.1038/s41598-024-67778-0. PMid:39039169.

Entre Ríos. (2025). Estación meteorológica automática – Concordia (Uruguay). Retrieved in 2025, March 17, from https://www.hidraulica.gob.ar/ema.php?station=curuguay

Güler, N., Hazem, Z. B., & Gunes, A. (2025). Optimizing solar PV systems using fuzzy logic for Climate-Resilient Healthcare infrastructure in Kyrgyzstan. Green Technologies and Sustainability, 3(3), 100190. http://doi.org/10.1016/j.grets.2025.100190.

Hadroug, N., Iratni, A., Hafaifa, A., Boudjemline, A., Alshammari, O. S., Jerbi, H., Colak, I., & Chen, X. Q. (2023). Energy efficiency improvement in photovoltaic installation using a twin-axis solar tracking mechanism with LDR sensors compared with neuro-fuzzy adaptive inference structure. Journal of Electrical Engineering & Technology, 18(4), 2943-2967. http://doi.org/10.1007/s42835-023-01411-4.

Hammi, Z., Labjar, N., Dalimi, M., El Hamdouni, Y., Lotfi, E. M., & El Hajjaji, S. (2024). Green hydrogen: A holistic review covering life cycle assessment, environmental impacts, and color analysis. International Journal of Hydrogen Energy, 80, 1030-1045. http://doi.org/10.1016/j.ijhydene.2024.07.008.

Hoseinpoor, M., Prošek, T., Babusiaux, L., & Mallégol, J. (2020). Toward more realistic time of wetness measurement by means of surface relative humidity. Corrosion Science, 177, 108999. http://doi.org/10.1016/j.corsci.2020.108999.

Hraich, A., & Haddi, A. (2025). Energy optimization and digitization of the PV energy balance between production and consumption. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 11, 100883. http://doi.org/10.1016/j.prime.2024.100883.

Ichi. (2025). Posición de Python Sun para la investigación y la energía solar. Retrieved in 2025, March 17, from https://ichi.pro/es/posicion-de-python-sun-para-la-investigacion-y-la-energia-solar-134478336890743

Kazem, H. A., Chaichan, M. T., Al-Waeli, A. H., & Sopian, K. (2024). Recent advancements in solar photovoltaic tracking systems: an in-depth review of technologies, performance metrics, and future trends. Solar Energy, 282, 112946. http://doi.org/10.1016/j.solener.2024.112946.

Kizielewicz, B., Tomczyk, T., Gandor, M., & Sałabun, W. (2024). Subjective weight determination methods in multi-criteria decision-making: a systematic review. Procedia Computer Science, 246, 5396-5407. http://doi.org/10.1016/j.procs.2024.09.673.

Koshkarbay, N., Mekhilef, S., Saymbetov, A., Kuttybay, N., Nurgaliyev, M., Dosymbetova, G., Orynbassar, S., Yershov, E., Kapparova, A., Zholamanov, B., & Bolatbek, A. (2024). Adaptive control systems for dual axis tracker using clear sky index and output power forecasting based on ML in overcast weather conditions. Energy and AI, 18, 100432. http://doi.org/10.1016/j.egyai.2024.100432.

Kuttybay, N., Mekhilef, S., Koshkarbay, N., Saymbetov, A., Nurgaliyev, M., Dosymbetova, G., Orynbassar, S., Yershov, E., Kapparova, A., Zholamanov, B., & Bolatbek, A. (2024). Assessment of solar tracking systems: a comprehensive review. Sustainable Energy Technologies and Assessments, 68, 103879. http://doi.org/10.1016/j.seta.2024.103879.

La Rioja. (2025). Red de estaciones agroclimáticas – SIAR. Retrieved in 2025, March 17, from https://www.larioja.org/agricultura/es/informacion-agroclimatica/red-estaciones-agroclimaticas-siar

Lu, N., & Qin, J. (2024). Optimization of tilt angle for PV in China with long-term hourly surface solar radiation. Renewable Energy, 229, 120741. http://doi.org/10.1016/j.renene.2024.120741.

Meteoblue. (2025). Tiempo. Retrieved in 2025, March 17, from https://www.meteoblue.com/

Meteored. (2025). Pronóstico del tiempo 14 días. Retrieved in 2025, March 17, from https://www.meteored.com.ar/

Molu, R. J. J., Tripathi, B., Mbasso, W. F., Naoussi, S. R. D., Bajaj, M., Wira, P., Blazek, V., Prokop, L., & Misak, S. (2024). Advancing short-term solar irradiance forecasting accuracy through a hybrid deep learning approach with Bayesian optimization. Results in Engineering, 23, 102461. http://doi.org/10.1016/j.rineng.2024.102461.

National Instruments. (2025). Descargar Multisim. Retrieved in 2025, March 17, from https://www.ni.com/es/support/downloads/software-products/download.multisim.html

National Renewable Energy Laboratory – NREL. (2025). Solar position algorithm for solar radiation applications. Retrieved in 2025, March 17, from https://www.nrel.gov/docs/fy08osti/34302.pdf

Ortega, A., Kurbán, A., & Montilla, E. (2024). Estadística climática año 2023 área metropolitana de San Juan: registros horario, estadística mensual, estacional y anual. Retrieved in 2025, March 17, from http://huru.unsj.edu.ar/handle/123456789/382

Ovando, G., Sayago, S., Bellini, Y., Belmonte, M. L., & Bocco, M. (2021). Precipitation estimations based on remote sensing compared with data from weather stations over agricultural region of Argentina pampas. Remote Sensing Applications: Society and Environment, 23, 100589. http://doi.org/10.1016/j.rsase.2021.100589.

Palmero, F., Carcedo, A. J., Haro, R. J., Bigatton, E. D., Salvagiotti, F., & Ciampitti, I. A. (2022). Modeling drought stress impacts under current and future climate for peanut in the semiarid pampas region of Argentina. Field Crops Research, 286, 108615. http://doi.org/10.1016/j.fcr.2022.108615.

Photovoltaic Geographical Information System – PVGIS. (2025). Retrieved in 2025, March 17, from https://pvgis.com/

Praveen, P. N., & Menaka, D. (2024). A dual-axis solar tracking system with minimized tracking error through optimization technique. Multimedia Tools and Applications, 83(1), 58891-58914. http://doi.org/10.1007/s11042-023-17698-4.

Ré, M. G., Mazzocco, M. P., & Filippín, C. (2021). Mejoras de eficiencia energética en calefacción: Potencial de intervención en edificio escolar existente del área metropolitana de San Juan, Argentina. Revista Hábitat Sustentable, 11(1), 20-31. http://doi.org/10.22320/07190700.2021.11.01.02.

Sameera, T., Tariq, M., Rihan, M., & Ayan, M. (2024). A comprehensive review on the application of recently introduced optimization techniques obtaining maximum power in the solar PV system. Renewable Energy Focus, 49, 100564. http://doi.org/10.1016/j.ref.2024.100564.

San Juan, Departamento de Hidráulica. (2025). Sistema Integrado de Información Hídrica. Retrieved in 2025, March 17, from https://hidraulica.sanjuan.gob.ar/sistemas/hidrico.php

Saraji, M. K., Streimikiene, D., & Suresh, V. (2024). A novel two-stage multicriteria decision-making approach for selecting solar farm sites: a case study. Journal of Cleaner Production, 444, 141198. http://doi.org/10.1016/j.jclepro.2024.141198.

Sarroca, E. A., Nieto, F. G., Sosa, G., Camargo, F. G., Douglas, G. N., Rossomando, F., & Arias, E. N. (2024). Diseño de prototipo de sistema de telemetría para sistema solar fotovoltaico. In Libro de Trabajos del Congreso Argentino de Sistemas Embebidos (CASE 2024). Ciudad Autónoma de Buenos Aires: ACSE. Retrieved in 2025, March 17, from https://case.ar/wp-content/uploads/2024/10/libro2024_C.pdf

Sobirov, M. M., Rozikov, J. Y., Yusupova, D. A., & Ruziboev, V. U. (2023). The calculation of spectral and angular distribution of diffusely reflected, diffusely transmitted, and unscattered fluxes of solar radiation in atmospheric layers. Applied Solar Energy, 59(5), 761-769. http://doi.org/10.3103/S0003701X23601187.

Straffelini, E., Carrillo, N., Schilardi, C., Aguilera, R., Estrella Orrego, M. J., & Tarolli, P. (2023). Viticulture in Argentina under extreme weather scenarios: actual challenges, future perspectives. Geography and Sustainability, 4(2), 161-169. http://doi.org/10.1016/j.geosus.2023.03.003.

Sun, L., Bai, J., Pachauri, R. K., & Wang, S. (2024). A horizontal single-axis tracking bracket with an adjustable tilt angle and its adaptive real-time tracking system for bifacial PV modules. Renewable Energy, 221, 119762. http://doi.org/10.1016/j.renene.2023.119762.

WeatherSpark. (2025). Clima en Argentina. Retrieved in 2025, March 17, from https://es.weatherspark.com/countries/AR

Wen, L., & Ajay, P. (2024). Solar PV tracking system using arithmetic optimization with dual axis and sensor. Measurement: Sensors, 33, 101089. http://doi.org/10.1016/j.measen.2024.101089.

Wu, C. H., Wang, H. C., & Chang, H. Y. (2022). Dual-axis solar tracker with satellite compass and inclinometer for automatic positioning and tracking. Energy for Sustainable Development, 66, 308-318. http://doi.org/10.1016/j.esd.2021.12.013.

Yadav, A. K., Khargotra, R., Lee, D., Kumar, R., & Singh, T. (2024). Novel applications of various neural network models for prediction of photovoltaic system power under outdoor condition of mountainous region. Sustainable Energy, Grids and Networks, 38, 101318. http://doi.org/10.1016/j.segan.2024.101318.

Zou, Y., Qin, C., Liu, H., Zhang, B., & Wu, X. (2024). Concentrating photovoltaic systems: A review of temperature effects and components. Journal of Thermal Analysis and Calorimetry, 149(3), 1301-1329. http://doi.org/10.1007/s10973-023-12767-0.
 


Submitted date:
12/06/2024

Accepted date:
09/15/2025

6917045ca953957d5833ed74 production Articles
Links & Downloads

Production

Share this page
Page Sections